Skip to main content

Advertisement

Log in

Two-dimensional layered materials: Structure, properties, and prospects for device applications

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene’s layered structure has opened new prospects for the exploration of properties of other monolayer-thick two-dimensional (2D) layered crystals. The emergence of these inorganic 2D atomic crystals beyond graphene promises a diverse spectrum of properties. For example, hexagonal-boron nitride (h-BN), a layered material closest in structure to graphene is an insulator, while niobium selenide (NbSe2), a transition metal dichalcogenide, is metallic, and monolayers of other transition metal dichalcogenides such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are direct band gap semiconductors. The rich spectrum of properties exhibited by these 2D layered material systems can potentially be engineered on-demand and creates exciting prospects for using such systems in device applications ranging from electronics, photonics, energy harvesting, flexible electronics, transparent electrodes, and sensing. A review of the structure, properties, and the emerging device applications of these materials is presented in this paper. While the layered structure of these materials makes them amenable to mechanical exfoliation for quickly unveiling their novel properties and for fabricating proof-of-concept devices, an overview of the synthesis routes that can potentially enable scalable avenues for forming these 2D atomic crystals is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).

    Article  CAS  Google Scholar 

  2. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, and P. Avouris: 100 GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662 (2010).

    Article  CAS  Google Scholar 

  3. Y.Q. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu, A.A. Bol, C. Dimitrakopoulos, W.J. Zhu, F.N. Xia, P. Avouris, and Y.M. Lin: State-of-the-art graphene high-frequency electronics. Nano Lett. 12(6), 3062 (2012).

    Article  CAS  Google Scholar 

  4. Y. Khatami, H. Li, C. Xu, and K. Banerjee: Metal-to-multilayer-graphene contact–Part 1: Contact resistance modeling. IEEE Trans. Electron Devices 59(9), 2444 (2012).

    Article  CAS  Google Scholar 

  5. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472 (2011).

    Article  CAS  Google Scholar 

  6. Y. Lu, M.B. Lerner, Z.J. Qi, J.J. Mitala, J.H. Lim, B.M. Discher, and A.T.C. Johnson: Graphene-protein bioelectronics devices with wavelength-dependent photoresponse. Appl. Phys. Lett. 100, 033110 (2012).

    Article  CAS  Google Scholar 

  7. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706 (2009).

    Article  CAS  Google Scholar 

  8. P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi: Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102(16), 166808 (2009).

    Article  CAS  Google Scholar 

  9. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, and A.F. Hebard: High efficiency graphene solar cells by chemical doping. Nano Lett. 12(6), 2745 (2012).

    Article  CAS  Google Scholar 

  10. X. Dang, H. Yi, M. Ham, J. Qi, D. Yun, R. Ladewski, M.S. Strano, P.T. Hammond, and A.M. Belcher: Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 6(6), 377 (2011).

    Article  CAS  Google Scholar 

  11. A. Vakil and N. Engheta: Transformation optics using graphene. Science 332(6035), 1291 (2011).

    Article  CAS  Google Scholar 

  12. O.Y. Loh and H.D. Espinosa: Nanoelectromechanical contact switches. Nat. Nanotechnol. 7(5), 283 (2012).

    Article  CAS  Google Scholar 

  13. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229 (2008).

    Article  CAS  Google Scholar 

  14. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, and L. Hornekær: Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9(4), 315 (2010).

    Article  CAS  Google Scholar 

  15. Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, and F. Wang: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820 (2009).

    Article  CAS  Google Scholar 

  16. K. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451 (2005).

    Article  CAS  Google Scholar 

  17. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  18. M. Xu, T. Liang, M. Shi, and H. Chen: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766 (2013).

    Article  CAS  Google Scholar 

  19. E. Bianco, S. Butler, S. Jiang, O.D. Restrepo, W. Windl, and J.E. Goldberger: Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 7(5), 4414–4421 (2013).

    Article  CAS  Google Scholar 

  20. P. Vogt, P.D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, and G.L. Lay: Silicene: Compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012).

    Article  CAS  Google Scholar 

  21. L. Song, Z. Liu, A.L. Reddy, N.T. Narayanan, J. Taha-Tijerina, J. Peng, G. Gao, J. Lou, R. Vajtai, and P.M. Ajayan: Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv. Mater. 24(36), 4878 (2012).

    Article  CAS  Google Scholar 

  22. http://nsf2dworkshop.rice.edu/home/.

  23. J.A. Wilson and A.D. Yoffe: Transition metal dichalcogenides: Discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193 (1969).

    Article  CAS  Google Scholar 

  24. M. Osada and T. Sasaki: Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210 (2012).

    Article  CAS  Google Scholar 

  25. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone: Born nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010).

    Article  CAS  Google Scholar 

  26. C. Ataca, H. Sahin, and S.J. Ciraci: Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. Phys. Chem. C 116(16), 8983 (2012).

    Article  CAS  Google Scholar 

  27. A. Kuc, N. Zibouche, and T. Heine: Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011).

    Article  CAS  Google Scholar 

  28. M. Chhowalla, H.S. Shin, G. Eda, L-J. Li, K.P. Loh, and H. Zhang: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263 (2013).

    Article  Google Scholar 

  29. E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onse, T. Klimczuk, A.P. Ramirez, N.P. Ong, and R.J. Cava: Superconductivity in CuxTiSe2. Nat. Phys. 2(8), 544 (2006).

    Article  CAS  Google Scholar 

  30. P. Husanikova, J. Fedor, J. Derer, J. Soltys, V. Cambel, M. Iavarone, S.J. May, and G. Karapetrov: Magnetization properties and vortex phase diagram in CuxTiSe2 single crystals. Phys. Rev. B 88(17), 174501 (2013).

    Article  CAS  Google Scholar 

  31. T. Li and G. Galli: Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111(44), 16192 (2007).

    Article  CAS  Google Scholar 

  32. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P-H. Tan, and G. Eda: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791 (2013).

    Article  CAS  Google Scholar 

  33. Y.D. Ma, Y. Dai, M. Guo, C.W. Niu, J.B. Lu, and B.B. Huang: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13(34), 15546 (2011).

    Article  CAS  Google Scholar 

  34. A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271 (2010).

    Article  CAS  Google Scholar 

  35. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically think MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).

    Article  CAS  Google Scholar 

  36. T. Boker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Voss, P. Kruger, A. Mazur, and J. Pollmann: Band structure of MoS2, MoSe2, and alpha-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64(23), 235305 (2001).

    Article  CAS  Google Scholar 

  37. A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann: Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions. Phys. Rev. B 64(20), 205416 (2001).

    Article  CAS  Google Scholar 

  38. A. Ramasubramaniam, D. Naveh, and E. Towe: Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84(20), 205325 (2011).

    Article  CAS  Google Scholar 

  39. S. Lebegue and O. Eriksson: Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79(11), 115409 (2009).

    Article  CAS  Google Scholar 

  40. M.P. Levendorf, C.J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, and J. Park: Graphene and boron nitride lateral heterostructrures for atomically thin circuitry. Nature 488(7413), 627 (2012).

    Article  CAS  Google Scholar 

  41. U. Landman, R.N. Barnett, A.G. Scherbakov, and P. Avouris: Metal-semiconductor nanocontacts: Silicon nanowires. Phys. Rev. Lett. 85(9), 1958 (2000).

    Article  CAS  Google Scholar 

  42. F. Leonard and A.A. Talin: Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys. Rev. Lett. 97(2), 026804 (2006).

    Article  CAS  Google Scholar 

  43. N. Nemec, D. Tomanek, and G. Cuniberti: Contact dependence of carrier injection in carbon nanotubes: An ab initio study. Phys. Rev. Lett. 96(7), 076802 (2006).

    Article  CAS  Google Scholar 

  44. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147 (2011).

    Article  CAS  Google Scholar 

  45. I. Popov, G. Seifert, and D. Tomanek: Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 108(15), 156802 (2012).

    Article  CAS  Google Scholar 

  46. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, and K.I. Bolotin: Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626 (2013).

    Article  CAS  Google Scholar 

  47. K. He, C. Poole, K.F. Mak, and J. Shan: Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931 (2013).

    Article  CAS  Google Scholar 

  48. P. Lu, X. Wu, W. Guo, and X.C. Zeng: Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14, 13035 (2012).

    Article  CAS  Google Scholar 

  49. E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans: Strain-induced semiconductor to metal transition in the two dimensional honeycomb structure of MoS2. Nano Res. 5, 43 (2012).

    Article  CAS  Google Scholar 

  50. S. Bertolazzi, J. Brivio, and A. Kis: Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703 (2011).

    Article  CAS  Google Scholar 

  51. J.R. Sanchez-Perez, C. Boztug, F. Chen, F.F. Sudradjat, D.M. Paskiewicz, R.B. Jacobson, M.G. Lagally, and R. Paiella: Direct-bandgap light-emitting germanium in tensilely strained nanomembranes. Proc. Natl. Acad. Sci. U.S.A. 108, 18893 (2011).

    Article  CAS  Google Scholar 

  52. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, and J.D. Lee: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X-2 semiconductors (M=Mo, W; X = S, Se, Te). Phys. Rev. B 85, 033305 (2012).

    Article  CAS  Google Scholar 

  53. J. Feng, X. Qian, C. Huang, and J. Li: Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012).

    Article  CAS  Google Scholar 

  54. W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan: Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952 (2013).

    Article  CAS  Google Scholar 

  55. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, and L.A. Ponomarenko: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947 (2012).

    Article  CAS  Google Scholar 

  56. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, and A. Mishchenko: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100 (2013).

    Article  CAS  Google Scholar 

  57. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, and K.S. Novoselov: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311 (2013).

    Article  CAS  Google Scholar 

  58. M.R. Esmaeili-Rad and S. Salahuddin: High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 3, 2345 (2013).

    Article  Google Scholar 

  59. V. Podzorov, M.E. Gershenson, C. Kloc, R. Zeis, and E. Bucher: High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84(17), 3301 (2004).

    Article  CAS  Google Scholar 

  60. S. Ghatak, A.N. Pal, and A. Ghosh: Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5, 7707 (2011).

    Article  CAS  Google Scholar 

  61. R. Fivaz and E. Mooser: Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163(3), 743 (1967).

    Article  CAS  Google Scholar 

  62. J. Debdeep and K. Aniruddha: Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).

    Article  CAS  Google Scholar 

  63. F. Chen, J. Xia, D.K. Ferry, and N. Tao: Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571 (2009).

    Article  CAS  Google Scholar 

  64. H. Liu, A.T. Neal, and P.D. Ye: Channel length scaling of MoS2 MOSFETS. ACS Nano 6, 8563 (2012).

    Article  CAS  Google Scholar 

  65. K. Kim, J.Y. Choi, T. Kim, S.H. Cho, and H.J. Chung: A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338 (2011).

    Article  CAS  Google Scholar 

  66. K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen: Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  CAS  Google Scholar 

  67. S. Kim, A. Konar, W-S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J-B. Yoo, J-Y. Choi, Y.W. Jin, S.Y. Lee, D. Jena, W. Choi, and K. Kim: High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).

    Article  CAS  Google Scholar 

  68. Y. Yoon, K. Ganapathi, and S. Salahuddin: How good can monolayer MoS2 transistors be?. Nano Lett. 11(9), 3768 (2011).

    Article  CAS  Google Scholar 

  69. L. Liu, S.B. Kumar, Y.J. Ouyang, and J. Guo: Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042 (2011).

    Article  CAS  Google Scholar 

  70. R. Bistritzer and A.H. MacDonald: Transport between twisted graphene layers. Phys. Rev. B 81, 245412 (2010).

    Article  CAS  Google Scholar 

  71. R.M. Feenstra, D. Jena, and G. Gu: Single-particle tunneling in doped graphene-insulator-graphene junctions. J. Appl. Phys. 111, 043711 (2012).

    Article  CAS  Google Scholar 

  72. V. Perebeinos, J.D. Tersoff, and P. Avouris: Phonon-mediated interlayer conductance in twisted graphene bilayers. Phys. Rev. Lett. 109, 236604 (2012).

    Article  CAS  Google Scholar 

  73. L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, and L. Eaves: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

    Article  CAS  Google Scholar 

  74. B. Radisavljevic, M.B. Whitwick, and A. Kis: Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934 (2011).

    Article  CAS  Google Scholar 

  75. H. Wang, L. Yu, Y-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L-J. Li, M. Dubey, J. Kong, and T. Palacios: Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674 (2012).

    Article  CAS  Google Scholar 

  76. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, and J. Wu: Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12(11), 5576 (2012).

    Article  CAS  Google Scholar 

  77. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang: Single-layer MoS2 phototransistors. ACS Nano 6(1), 74 (2012).

    Article  CAS  Google Scholar 

  78. H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, and S. Im: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695 (2012).

    Article  CAS  Google Scholar 

  79. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J.C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne: MS2 (M=W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 46(2), 115 (1997).

    Article  CAS  Google Scholar 

  80. A. Polman and H.A. Atwater: Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11(3), 174 (2012).

    Article  CAS  Google Scholar 

  81. M. Bernardi, M. Palummo, and J.C. Grossman: Extraordinary sunlight absorption and 1 nm-thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13(8), 3664 (2013).

    Article  CAS  Google Scholar 

  82. M. Shanmugam, T. Bansal, C.A. Durcan, and B. Yu: Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunctions solar cell. Appl. Phys. Lett. 100, 153901 (2012).

    Article  CAS  Google Scholar 

  83. M. Thomalla and H. Tributsch: Photosensitization of nanostructured TiO2 with WS2 quantum sheets. J. Phys. Chem. B 110, 12167 (2006).

    Article  CAS  Google Scholar 

  84. J.N. Coleman, M. Lotya, A. O’Neil, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568 (2011).

    Article  CAS  Google Scholar 

  85. P. Joensen, R.F. Frindt, and S.R. Morrison: Single-layer MoS2. Mater. Res. Bull. 21(4), 457 (1986).

    Article  CAS  Google Scholar 

  86. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, and J. Lou: Large-area vapor phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7), 966 (2012).

    Article  CAS  Google Scholar 

  87. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao: Controlled scalable synthesis of uniform, high-quality monolayer and few layer MoS2 films. Sci. Rep. 3, 1866 (2013).

    Article  CAS  Google Scholar 

  88. A. Koma and K. Yoshimura: Ultra-sharp interfaces grown with van der Waals epitaxy. Surf. Sci. 174, 556 (1986).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

ABK wishes to acknowledge support for this through the NSF independent research and development (IR&D) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama B. Kaul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaul, A.B. Two-dimensional layered materials: Structure, properties, and prospects for device applications. Journal of Materials Research 29, 348–361 (2014). https://doi.org/10.1557/jmr.2014.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.6

Navigation