Skip to main content
Log in

Indentation-derived elastic modulus of multilayer thin films: Effect of unloading-induced plasticity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. The indentation-derived modulus of a monolayer material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. It is found that several cycles are required to minimize unloading-induced plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. R.W. Cahn: The Coming of Materials Science, 5th ed. (Pergamon Press, Oxford, England, 2001).

    Google Scholar 

  2. V.J. Laraia and A.H. Heuer: Novel composite microstructure and mechanical-behavior of mollusk shell. J. Am. Ceram. Soc. 72 (11), 2177 (1989).

    Google Scholar 

  3. S.W. Ko, T. Dechakupt, C.A. Randall, S. Trolier-McKinstry, M. Randall, and A. Tajuddin: Chemical solution deposition of copper thin films and integration into a multilayer capacitor structure. J. Electroceram. 24 (3), 161 (2010).

    CAS  Google Scholar 

  4. T. Koseki, J. Inoue, and S. Nambu: Development of multilayer steels for improved combinations of high strength and high ductility. Mater. Trans. 55 (2), 227 (2014).

    CAS  Google Scholar 

  5. Y. Sahin: The effects of various multilayer ceramic coatings on the wear of carbide cutting tools when machining metal matrix composites. Surf. Coat. Technol. 199 (1), 112 (2005).

    CAS  Google Scholar 

  6. L. Ghalandari and M.M. Moshksar: High-strength and high-conductive Cu/Ag multilayer produced by ARB. J. Alloys Compd. 506 (1), 172 (2010).

    CAS  Google Scholar 

  7. A.A. Voevodin, J.M. Schneider, C. Rebholz, and A. Matthews: Multilayer composite ceramic-metal-DLC coatings for sliding wear applications. Tribol. Int. 29 (7), 559 (1996).

    CAS  Google Scholar 

  8. M.P. Schmitt, A.K. Rai, R. Bhattacharya, D.M. Zhu, and D.E. Wolfe: Multilayer thermal barrier coating (TBC) architectures utilizing rare earth doped YSZ and rare earth pyrochlores. Surf. Coat. Technol. 251, 56 (2014).

    CAS  Google Scholar 

  9. D.L. Windt and J.A. Bellotti: Performance, structure, and stability of SiC/Al multilayer films for extreme ultraviolet applications. Appl. Opt. 48 (26), 4932 (2009).

    CAS  Google Scholar 

  10. A. Ziani, F. Delmotte, C. Le Paven-Thivet, E. Meltchakov, A. Jerome, M. Roulliay, F. Bridou, and K. Gasc: Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging. Thin Solid Films 552, 62 (2014).

    CAS  Google Scholar 

  11. S. Lotfian, M. Rodriguez, K.E. Yazzie, N. Chawla, J. Llorca, and J.M. Molina-Aldareguia: High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater. 61, 4439 (2013).

    CAS  Google Scholar 

  12. I. Knorr, N.M. Cordero, E.T. Lilleodden, and C.A. Volkert: Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 61, 4984 (2013).

    CAS  Google Scholar 

  13. D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, and A. Misra: Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater. 59 (10), 3804 (2011).

    CAS  Google Scholar 

  14. X. Deng, C. Cleveland, N. Chawla, T. Karcher, M. Koopman, and K.K. Chawla: Nanoindentation behavior of nanolayered metal ceramic composites. J. Mater. Eng. Perform. 14 (4), 417 (2005).

    CAS  Google Scholar 

  15. J. Romero, A. Lousa, E. Martinez, and J. Esteve: Nanometric chromium/chromium carbide multilayers for tribological applications. Surf. Coat. Technol. 163, 392 (2003).

    Google Scholar 

  16. M.A. Phillips, B.M. Clemens, and W.D. Nix: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 51 (11), 3171 (2003).

    CAS  Google Scholar 

  17. Y-C. Wang, A. Misra, and R.G. Hoagland: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).

    CAS  Google Scholar 

  18. A.S. Budiman, S-M. Han, N. Li, Q-M. Wei, P. Dickerson, N. Tamura, M. Kunz, and A. Misra: Plasticity in the nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron Laue x-ray microdiffraction. J. Mater. Res. 27 (3), 599 (2012).

    CAS  Google Scholar 

  19. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  20. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Google Scholar 

  21. B.A. Galanov, O.N. Grigor’ev, Y.V. Mil’man, and I.P. Ragozin: Determination of the hardness and Young’s modulus from the depth of penetration of a pyramidal indentor. Strength Mater. 15 (11), 1624 (1983).

    Google Scholar 

  22. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Google Scholar 

  23. G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    CAS  Google Scholar 

  24. A. Bolshakov, W.C. Oliver, and G.M. Pharr: An explanation for the shape of nanoindentation unloading curves based on finite element simulation. MRS Proc. 356, 675 (1994).

    Google Scholar 

  25. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).

    CAS  Google Scholar 

  26. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    CAS  Google Scholar 

  27. G. Tang, Y-L. Shen, D.R.P. Singh, and N. Chawla: Indentation behavior of metal-ceramic multillayers at the nanoscale: Numerical analysis and experimental verification. Acta Mater. 58, 2033 (2010).

    CAS  Google Scholar 

  28. F.-L. Wen and Y-L. Shen: Plastic deformation in multilayered thin films during indentation unloading: A modeling analysis incorporating viscoplastic response. Mech. Time-Depend. Mater. 15, 277 (2011).

    CAS  Google Scholar 

  29. Y-L. Shen, C.B. Blada, J.J. Williams, and N. Chawla: Cyclic indentation behavior of metal–ceramic nanolayered composites. Mater. Sci. Eng., A 557, 119 (2012).

    CAS  Google Scholar 

  30. N. Chawla, D.R.P. Singh, Y-L. Shen, G. Tang, and K.K. Chawla: Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites. J. Mater. Sci. 43 (13), 4383 (2008).

    CAS  Google Scholar 

  31. A.C. Fischer-Cripps: Nanoindentation, 1st ed. (Springer, New York, USA, 2002).

    Google Scholar 

  32. D.R. Lide: Handbook of Chemistry and Physics, 76th ed. (CRC, Flordia, USA, 1995).

    Google Scholar 

  33. J.L. Bucaille, S. Stauss, P. Schwaller, and J. Michler: A new technique to determine the elastoplastic properties of thin metallic films using sharp indenters. Thin Solid Films 447, 239 (2004).

    Google Scholar 

  34. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, and J.P. Chu: Mechanical behavior of multilayered nanoscale metal-ceramic composites. Adv. Eng. Mater. 7 (12), 1099 (2005).

    CAS  Google Scholar 

  35. P.L. Sun, J.P. Chu, T.Y. Lin, Y-L. Shen, and N. Chawla: Characterization of nanoindentation damage in metal/ceramic multilayered films by transmission electron microscopy (TEM). Mater. Sci. Eng., A 257, 2985 (2010).

    Google Scholar 

  36. G. Tang, Y-L. Shen, D.R.P. Singh, and N. Chawla: Analysis of indentation-derived effective elastic modulus of metal-ceramic multilayers. Int. J. Mech. Mater. Des. 4, 391 (2008).

    CAS  Google Scholar 

  37. Y-L. Shen: Constrained Deformation of Materials (Springer, New York, USA, 2010).

    Google Scholar 

  38. D.R.P. Singh, N. Chawla, and Y-L. Shen: Focused ion beam (FIB) tomography of nanoindentation damage in nanoscale metal/ceramic multilayers. Mater. Charact. 61 (4), 481 (2010).

    CAS  Google Scholar 

  39. R.D. Jamison and Y-L. Shen: Indentation and overall compression behavior of multilayered thin-film composites: Effect of undulating layer geometry. J. Compos. Mater. doi: https://doi.org/10.1177/0021998315576768, Published online 19 March 2015.

  40. W.C. Oliver and G.M. Pharr: Nanoindentation in materials research: Past, present, and future. MRS Bull. 35 (11), 897 (2010).

    CAS  Google Scholar 

  41. S. Suresh: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, England, 1998).

    Google Scholar 

  42. G. Feng, A.S. Budiman, W.D. Nix, N. Tamura, and J.R. Patel: Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction. J. Appl. Phys. 104, 043501 (2008).

    Google Scholar 

  43. A.S. Budiman, K.R. Narayanan, L.A. Berla, N. Li, P. Dickerson, J. Wang, N. Tamura, M. Kunz, W.D. Nix, and A. Misra: Plasticity evolution in nanoscale Cu/Nb single crystal multilayers as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng., A 635, 6 (2015).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Jamison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamison, R.D., Shen, YL. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading-induced plasticity. Journal of Materials Research 30, 2279–2290 (2015). https://doi.org/10.1557/jmr.2015.200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.200

Navigation