Skip to main content
Log in

A catalytic alloy approach for graphene on epitaxial SiC on silicon wafers

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We introduce a novel approach to the synthesis of high-quality and highly uniform few-layer graphene on silicon wafers, based on solid source growth from epitaxial 3C-SiC films. Using a Ni/Cu catalytic alloy, we obtain a transfer-free bilayer graphene directly on Si(100) wafers, at temperatures potentially compatible with conventional semiconductor processing. The graphene covers uniformly a 2″ silicon wafer, with a Raman ID/ IG band ratio as low as 0.5, indicative of a low defectivity material. The sheet resistance of the graphene is as low as 25 Ω/square, and its adhesion energy to the underlying substrate is substantially higher than transferred graphene. This work opens the avenue for the true wafer-level fabrication of microdevices comprising graphene functional layers. Specifically, we suggest that exceptional conduction qualifies this graphene as a metal replacement for MEMS and advanced on-chip interconnects with ultimate scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. De Heer: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  3. W.A. De Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, and E. Conrad: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U. S. A. 108, 16900–16905 (2011).

    Article  Google Scholar 

  4. S. Forti and U. Starke: Epitaxial graphene on SiC: From carrier density engineering to quasi-free standing graphene by atomic intercalation. J. Phys. D: Appl. Phys. 47, 094013 (2014).

    Article  Google Scholar 

  5. A. Ouerghi, A. Kahouli, D. Lucot, M. Portail, L. Travers, J. Gierak, J. Penuelas, P. Jegou, A. Shukla, T. Chassagne, and M. Zielinski: Epitaxial graphene on cubic SiC(111)/Si(111) substrate. Appl. Phys. Lett. 96, 191910 (2010).

    Article  CAS  Google Scholar 

  6. B. Gupta, M. Notarianni, N. Mishra, M. Shafiei, F. Iacopi, and N. Motta: Evolution of epitaxial graphene layers on 3C SiC/Si(111) as a function of annealing temperature in UHV. Carbon 68, 563–572 (2014).

    Article  CAS  Google Scholar 

  7. H. Fukidome, S. Abe, R. Takahashi, K. Imaizumi, S. Inomata, H. Handa, E. Saito, Y. Enta, A. Yoshigoe, Y. Tareoka, M. Kotsugi, T. Ohkouchi, T. Kinoshita, S. Ito, and M. Suemitsu: Control over structural and electronic properties of epitaxial graphene on silicon using surface termination of 3C-SiC(111)/Si. Appl. Phys. Express 4, 115104 (2011).

    Article  Google Scholar 

  8. H. Fukidome, R. Takahashi, S. Abe, K. Imaizumi, H. Handa, C.H. Kang, H. Karasawa, T. Suemitsu, T. Otsuji, Y. Enta, A. Yoshigoe, Y. Teraoka, M. Kotsugi, T. Ohkouchi, T. Kinoshita, and M. Suemitsu: Control of epitaxy of graphene by crystallographic orientation of a Si substrate toward device applications. J. Mater. Chem. 21, 17242–17248 (2011).

    Article  CAS  Google Scholar 

  9. N. Mishra, L. Hold, A. Iacopi, B. Gupta, N. Motta, and F. Iacopi: Controlling the surface roughness of epitaxial SiC on silicon. J. Appl. Phys. 115, 203501 (2014).

    Article  Google Scholar 

  10. B.V. Cunning, M. Ahmed, N. Mishra, A.R. Kermany, B. Wood, and F. Iacopi: Graphitized silicon carbide microbeams: Wafer-level, self-aligned graphene on silicon wafers. Nanotechnology 25, 325301 (2014).

    Article  Google Scholar 

  11. H. Fukidome, Y. Kawai, H. Handa, H. Hibino, H. Miyashita, M. Kotsugi, T. Ohkochi, M. Jung, T. Suemitsu, T. Kinoshita, T. Otsuji, and M. Suemitsu: Site-selective epitaxy of graphene on Si wafers. Proc. IEEE 101 (7), 1557 (2013).

    Article  CAS  Google Scholar 

  12. L. Wang, S. Dimitrijev, P. Tanner, J. Han, A. Iacopi, L. Hold, and B.H. Harrison: Growth of 3C-SiC on 150 mm Si (100) substrates by alternating supply epitaxy at 1000°C. Thin Solid Films 519, 6443–6446 (2011).

    Article  CAS  Google Scholar 

  13. F. Iacopi, G. Walker, L. Wang, L. Malesys, S. Ma, B.V. Cunning, and A. Iacopi: Orientation-dependent stress relaxation in hetero-epitaxial 3C-SiC films. Appl. Phys. Lett. 102, 011908 (2013).

    Article  Google Scholar 

  14. R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141–162 (1998).

    Article  Google Scholar 

  15. M. Lane, R.H. Dauskardt, N. Krishna, and I. Hashim: Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15, 203–211 (2000).

    Article  CAS  Google Scholar 

  16. A.C. Ferrari and D.M. Basko: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    Article  CAS  Google Scholar 

  17. F. Iacopi, B. Cunning, and M. Ahmed: Process for forming graphene layers on silicon carbide. PCT/AU2014/050218, 2014.

  18. Z-Y. Juang, C-Y. Wu, C-W. Lo, W-Y. Chen, C-F. Huang, J-C. Hwang, F-R. Chen, K-C. Leou, and C-H. Tsai: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 2026–2031 (2009).

    Article  CAS  Google Scholar 

  19. A.A. Woodworth and C.D. Stinespring: Surface chemistry of Ni induced graphite formation on the 6H–SiC (0001) surface and its implications for graphene synthesis. Carbon 48, 1999–2003 (2010).

    Article  CAS  Google Scholar 

  20. A. Lauwers, A. Steegen, M. De Potter, R. Lindsay, A. Satta, H. Bender, and K. Maex: Materials aspects, electrical performance, and scalability of Ni silicide towards sub-0.13 μm technologies. J. Vac. Sci. Technol., B 19, 2026–2037 (2001).

    Article  CAS  Google Scholar 

  21. E. Escobedo-Cousin, K. Vassilevski, T. Hopf, N. Wright, A. O’Neill, A. Horsfall, J. Goss, and P. Cumpson: Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon. J. Appl. Phys. 113, 114309 (2013).

    Article  Google Scholar 

  22. The Landholt-Boernstein Database, Springer Materials online database. Springer.

  23. A. Ouerghi, R. Belkhou, M. Marangolo, M.G. Silly, S. El Moussaoui, M. Eddrief, L. Largeau, M. Portail, and F. Sirotti: Structural coherency of epitaxial graphene on 3C–SiC(111) epilayers on Si(111). Appl. Phys. Lett. 97, 161905 (2010).

    Article  Google Scholar 

  24. A. Ouerghi, A. Balan, C. Castelli, M. Picher, R. Belkhou, M. Eddrief, M.G. Silly, M. Marangolo, A. Shukla, and F. Sirotti: Epitaxial graphene on single domain 3C-SiC (100) thin films grown on off-axis Si (100). Appl. Phys. Lett. 101, 021603 (2012).

    Article  Google Scholar 

  25. C. Coletti, K.V. Emtsev, A.A. Zacharov, T. Ouisse, D. Chaussende, and U. Starke: Large area quasi-free standing monolayer graphene on 3C-SiC(111). Appl. Phys. Lett. 99, 081904 (2011).

    Article  Google Scholar 

  26. G.R. Yazdi, R. Vasiliauskas, T. Iakimov, A. Zacharov, M. Syvajarvi, and R. Yakimova: Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes. Carbon 57, 477–484 (2013).

    Article  CAS  Google Scholar 

  27. B.J. Baliga: Silicon liquid-phase epitaxy—A review. J. Electrochem. Soc. 133, C5–C14 (1986).

    Article  Google Scholar 

  28. R.S. Wagner and W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  29. F. Iacopi, O. Richard, Y. Eichhammer, H. Bender, P.M. Vereecken, S. De Gendt, and M. Heyns: Size-dependent characteristics of indium-seeded Si nanowire growth. Electrochem. Solid-State Lett. 11, K98–K100 (2008).

    Article  CAS  Google Scholar 

  30. S.P. Koenig, N.G. Boddeti, M.L. Dunn, and J.S. Bunch: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011).

    Article  CAS  Google Scholar 

  31. S. Bae, H. Kim, Y. Lee, X. Xu, J-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y-J. Kim, K.S. Kim, B. Ozyilmaz, J-H. Ahn, and S. Ijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  32. G. Kaestle, H.G. Boyen, A. Schroeder, A. Plettl, and P. Ziemann: Size effect of the resistivity of thin epitaxial gold film. Phys. Rev. B 70, 165414 (2004).

    Article  Google Scholar 

  33. H. Kanter: Slow-electron mean free path in aluminum, silver and gold. Phys. Rev. B 1 (2), 522–536 (1970).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge Glenn Walker, Philip Tanner, Alan Iacopi, and Anthony Christian for their valuable technical support. The authors acknowledge the support from the Australian National Fabrication Facility (ANFF) and the Air Force Office of Scientific Research through the grant AOARD 144045. Dr. Francesca Iacopi is the recipient of a Future Fellowship from the Australian Research Council (FT120100445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Iacopi.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacopi, F., Mishra, N., Cunning, B.V. et al. A catalytic alloy approach for graphene on epitaxial SiC on silicon wafers. Journal of Materials Research 30, 609–616 (2015). https://doi.org/10.1557/jmr.2015.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.3

Navigation