Skip to main content
Log in

Role of stress in the high cycle fatigue behavior of advanced 9Cr/CrMoV dissimilarly welded joint

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Narrow gap submerged arc welding method accompanied with multilayer and multipass technology was used to manufacture advanced 9Cr and CrMoV dissimilarly welded joint used as a newly developed turbine rotor. The aim of this investigation was to evaluate the high cycle fatigue (HCF) behavior of the welded joint at room temperature. Uniaxial-stress controlled HCF tests at stress ratio R = −1 were performed with specimens chipped from the welded joint of mockup and the S-N curve up to 1.0 × 108 cycle lifetime was obtained. It was found that the fracture location transferred from heat affected zone (HAZ) of CrMoV side to weld metal (WM) with decreasing stress amplitude. The microstructure of the welded joint was characterized and microstructure diversity was found to be responsible for the failure locations both in the CrMoV-HAZ and WM. Fracture morphology of failure samples were also investigated by a scanning electron microscope. It is detected that the stress amplitude required to drive the inclusion to be the crack initiation of the CrMoV-HAZ lies behind the transition. With decreasing stress amplitudes, void in the WM more easily tends to be the initiation of a fatigue crack than inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. K. Jeongtea and K. Byeongook: Materials technology for PC-TPP in green economic era. Mater. Sci. Forum 654–656, 398 (2010).

    Google Scholar 

  2. K.H. Mayer and F. Masuyama: The development of creep-resistant steels. In Creep-Resistant Steels, F. Abe, T-U. Kern, and R. Viswanathan eds.; Woodhead Publishing: Sawston, UK, 2008; p. 15.

    Chapter  Google Scholar 

  3. A. Nagesha, M. Valsan, R. Kannan, K.B.S. Rao, and S.L. Mannan: Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr–1Mo ferritic steel. Int. J. Fatigue 24(12), 1285 (2002).

    Article  CAS  Google Scholar 

  4. V. Shankar, M. Valsan, K.B.S. Rao, R. Kannan, S.L. Mannan, and S.D. Pathak: Low cycle fatigue behavior and microstructural evolution of modified 9Cr–1Mo ferritic steel. Mater. Sci. Eng., A 437(2), 413 (2006).

    Article  Google Scholar 

  5. I. Le May, H.C. Furtado, and L.H. de Almeida: Precipitation in 9Cr–1Mo steel after creep deformation. Mater. Charact. 58(1), 72 (2007).

    Article  Google Scholar 

  6. V.V. Satyanarayana, G.M. Reddy, and T. Mohandas: Dissimilar metal friction welding of austenitic-ferritic stainless steels. J. Mater. Process Technol. 160(2), 128 (2005).

    Article  CAS  Google Scholar 

  7. H. Naffakh, M. Shamanian, and F. Ashrafizadeh: Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J. Mater. Process Technol. 209(7), 3628 (2009).

    Article  CAS  Google Scholar 

  8. K.R. Kolhe and C. Datta: Prediction of microstructure and mechanical properties of multipass SAW. J. Mater. Process Technol. 197(1–3), 241 (2008).

    Article  CAS  Google Scholar 

  9. P. Liu, F. Lu, X. Liu, H. Ji, and Y. Gao: Study on fatigue property and microstructure characteristics of welded nuclear power rotor with heavy section. J. Alloys Compd. 584, 430 (2014).

    Article  CAS  Google Scholar 

  10. Q. Wu, F. Lu, H. Cui, X. Liu, P. Wang, and X. Tang: Role of butter layer in low-cycle fatigue behavior of modified 9Cr and CrMoV dissimilar rotor welded joint. Mater. Des. 59, 165 (2014).

    Article  CAS  Google Scholar 

  11. Q. Guo, F. Lu, X. Liu, R. Yang, H. Cui, and Y. Gao: Correlation of microstructure and fracture toughness of advanced 9Cr/CrMoV dissimilarly welded joint. Mater. Sci. Eng., A 638, 240 (2015).

    Article  CAS  Google Scholar 

  12. D. Meng, F. Lu, H. Cui, Y. Ding, X. Tang, and X. Huo: Investigation on creep behavior of welded joint of advanced 9% Cr steels. J. Mater. Res. 30(2), 197 (2015).

    Article  CAS  Google Scholar 

  13. F. Lu, P. Liu, H. Ji, Y. Ding, X. Xu, and Y. Gao: Dramatically enhanced impact toughness in welded 10%Cr rotor steel by high temperature post-weld heat treatment. Mater. Charact. 92, 149 (2014).

    Article  CAS  Google Scholar 

  14. W. Liu, X. Liu, F. Lu, X. Tang, H. Cui, and Y. Gao: Creep behavior and microstructure evaluation of welded joint in dissimilar modified 9Cr–1Mo steels. Mater. Sci. Eng., A 644, 337 (2015).

    Article  CAS  Google Scholar 

  15. F. Lu, X. Liu, P. Wang, Q. Wu, H. Cui, and X. Huo: Microstructural characterization and wide temperature range mechanical properties of NiCrMoV steel welded joint with heavy section. J. Mater. Res. 30(13), 2108 (2015).

    Article  CAS  Google Scholar 

  16. K.D. Ramkumar, A. Choudhary, S. Aggarwal, and A. Srivastava: Characterization of microstructure and mechanical properties of continuous and pulsed current gas tungsten arc welded superaustenitic stainless steel. J. Mater. Res. 30(10), 1727 (2015).

    Article  Google Scholar 

  17. L. Zhao, H. Jing, L. Xu, J. An, G. Xiao, D. Xu, Y. Chen, and Y. Han: Investigation on mechanism of type IV cracking in P92 steel at 650 °C. J. Mater. Res. 26(7), 934 (2011).

    Article  CAS  Google Scholar 

  18. J-W. Nah, F. Ren, K-W. Paik, and K.N. Tu: Effect of electromigration on mechanical shear behavior of flip chip solder joints. J. Mater. Res. 21(03), 698 (2006).

    Article  CAS  Google Scholar 

  19. V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, and S. Sundaresan: Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater. Sci. Eng., A 358(1–2), 9 (2003).

    Article  Google Scholar 

  20. M-L. Zhu, L-L. Liu, and F-Z. Xuan: Effect of frequency on very high cycle fatigue behavior of a low strength Cr–Ni–Mo–V steel welded joint. Int. J. Fatigue 77, 166 (2015).

    Article  CAS  Google Scholar 

  21. N. Farabi, D.L. Chen, J. Li, Y. Zhou, and S.J. Dong: Microstructure and mechanical properties of laser welded DP600 steel joints. Mater. Sci. Eng., A 527(4–5), 1215 (2010).

    Article  Google Scholar 

  22. K. Sugimoto, M. Kobayashi, and S. Yasuki: Cyclic deformation behavior of a transformation-induced plasticity-aided dual-phase steel. Metall. Mater. Trans. A 28(12), 2637 (1997).

    Article  Google Scholar 

  23. Q.J. Wu, F.G. Lu, H.C. Cui, Y.M. Ding, X. Liu, and Y.L. Gao: Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint. Mater. Sci. Eng., A 615, 98 (2014).

    Article  CAS  Google Scholar 

  24. ASTM E466-07: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials (ASTM International: Philadelphia, 2007).

    Google Scholar 

  25. Q. Wu, F. Lu, H. Cui, X. Liu, P. Wang, and Y. Gao: Soft zone formation by carbon migration and its effect on the high-cycle fatigue in 9% Cr–CrMoV dissimilar welded joint. Mater. Lett. 141, 242 (2015).

    Article  CAS  Google Scholar 

  26. J.A. Francis, W. Mazur, and H.K.D.H. Bhadeshia: Type IV cracking in ferritic power plant steels. Mater. Sci. Technol. 22(12), 1387 (2006).

    Article  CAS  Google Scholar 

  27. Y. Murakami, N. Yokoyama, and J. Nagata: Mechanism of fatigue failure in ultralong life regime. Fatigue Fract. Eng. Mater. Struct. 25(8–9), 735 (2002).

    Article  CAS  Google Scholar 

  28. T. Sakai: Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. J. Solid Mech. Mater. Eng. 3(3), 425 (2009).

    Article  Google Scholar 

  29. K. Shiozawa, Y. Morii, S. Nishino, and L. Lu: Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Int. J. Fatigue 28(11), 1521 (2006).

    Article  CAS  Google Scholar 

  30. P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski, and E. Kerscher: Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. Scr. Mater. 67(10), 838 (2012).

    Article  CAS  Google Scholar 

  31. M-L. Zhu, F-Z. Xuan, and J. Chen: Influence of microstructure and microdefects on long-term fatigue behavior of a Cr–Mo–V steel. Mater. Sci. Eng., A 546, 90 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial supports by Shanghai Science and Technology Committee (No. 13DZ1101504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenggui Lu or Zhuguo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, C., Lu, F., Li, Z. et al. Role of stress in the high cycle fatigue behavior of advanced 9Cr/CrMoV dissimilarly welded joint. Journal of Materials Research 31, 292–301 (2016). https://doi.org/10.1557/jmr.2015.398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.398

Navigation