Skip to main content
Log in

Biosilica from diatoms microalgae: smart materials from bio-medicine to photonics

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Diatoms microalgae can be regarded as living factories producing nanostructured and mesoporous biosilica shells (frustules) having a highly ordered hierarchical architecture. These unique, morphological, chemical and mechanical properties make diatoms’ biosilica a very attractive nanomaterial for a wide variety of applications. Methods of purification of frustules that preserve their nanostructured morphology have been set up as well as in vivo or in vitro chemical modification protocols of the biosilica with functional molecules to generate biohybrid active materials for photonics, sensing, drug delivery and electronics. Herein we describe, with some selected examples, the great variety of applications envisaged for native and modified frustules, highlighting the material scientists’ benefit to avail of nature in the construction of highly ordered biohybrid architectures for nanotechnology. New concepts for the biotechnological production of nanomaterials are opened by the use of diatoms as living factories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17

Similar content being viewed by others

References

  1. D. Werner: The Biology of Diatoms (University of California Press, Berkeley, 1977).

    Google Scholar 

  2. R. Wetherbee: The diatom glasshouse. Science 298(5593), 547 (2002).

    Article  CAS  Google Scholar 

  3. J.P. Smol and E-F. Stoermer: The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. (Cambridge University Press, Cambridge, England, 2010).

    Book  Google Scholar 

  4. L. Riedrichs, M. Maier, and C. Hamm: A new method for exact three-dimensional reconstructions of diatom frustules. J. Microsc. 248, 208 (2012).

    Article  Google Scholar 

  5. D-M. Williams and P-J. Kociolek: Pursuit of a natural classification of diatoms: History, monophyly and the rejection of paraphyletic taxa. Eur. J. Phycol. 42, 313 (2007).

    Article  Google Scholar 

  6. M. Hildebrand: The molecular basis of diatom biosilica formation. In Biomineralization: From Biology to Biotechnology and Medical Applications, E. Buerlein, ed. (Wiley: Weinheim, 2000); pp. 170.

    Google Scholar 

  7. K. Thamatrakoln, A-J. Alverson, and M. Hildebrand: Comparative sequence analysis of diatom silicon transporters: Toward a mechanistic model of silicon transport. J. Phycol. 42, 822 (2006).

    Article  CAS  Google Scholar 

  8. M. Hildebrand, K. Dahlin, and B-E. Volcani: Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260, 480 (1998).

    Article  CAS  Google Scholar 

  9. N. Kröger, R. Deutzmann, C. Bergsdorf, and M. Sumper: Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. U.S.A. 97, 14133 (2000).

    Article  Google Scholar 

  10. M. Sumper: Silica pattern formation in diatoms: Species-specific polyamine biosynthesis. ChemBioChem 7, 1419 (2006).

    Article  CAS  Google Scholar 

  11. M. Sumper: A phase separation model for the nanopatterning of diatom biosilica. Science 295, 2430 (2002).

    Article  CAS  Google Scholar 

  12. M. Hildebrand: Diatoms, biomineralization processes, and genomics. Chem. Rev. 108, 4855 (2008).

    Article  CAS  Google Scholar 

  13. I.E. Parmisky and K.S. Golokhvast: Silaffins of diatoms: From applied biotechnology to biomedicine. Mar. Drugs 11, 3155 (2013).

    Article  CAS  Google Scholar 

  14. N. Kröger, R. Deutzmann, and M. Sumper: Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 285, 1129 (1999).

    Google Scholar 

  15. M. Sumper and N. Kröger: Silica formation in diatoms: The function of long-chain polyamines and silaffins. J. Mater. Chem. 14, 2059 (2004).

    Article  CAS  Google Scholar 

  16. D-J. Belton, S-V. Patwardhan, V-V. Annenkov, E-N. Danilovtseva, and C-C. Perry: From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proc. Natl. Acad. Sci. 105, 5963 (2007).

    Article  Google Scholar 

  17. R-H. Jin and R-T. Levi: Biomimetic synthesis of shaped and chiral silica entities templated by organic objective materials. Chem. Eur. J. 20, 7196 (2014).

    Article  CAS  Google Scholar 

  18. D-G. Mann: The species concept in diatoms. Phycologia 38, 437 (1999).

    Article  Google Scholar 

  19. P-A. Sims, D-G. Mann, and L-K. Medlin: Evolution of the diatoms: Insights from fossil, biological and molecular data. Phycologia 45, 361 (2006).

    Article  Google Scholar 

  20. R-W. Drum and R. Gordon: Star trek replicators and diatom nanotechnology. Trends Biotechnol. 21, 325 (2003).

    Article  CAS  Google Scholar 

  21. W. Yang, P-J. Lopez, and G. Rosengarten: Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 136, 42 (2011).

    Article  CAS  Google Scholar 

  22. T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper: Diatoms as living photonic crystals. Appl. Phys. B. 78, 257 (2004).

    Article  CAS  Google Scholar 

  23. K.R. Martin: The chemistry of silica and its potential health benefits. J. Nutr. Health Aging 11, 94 (2007).

    CAS  Google Scholar 

  24. H. Wachter, M. Lechleitner, E. Artner-Dworzak, A. Hausen, E. Jarosch, B. Widner, J. Patsch, K. Pfeiffer, and D. Fuchs: Diatomaceous earth lowers blood cholesterol concentrations. Eur. J. Med. Res. 3, 211 (1998).

    CAS  Google Scholar 

  25. K. Korunic and A. Mackay: Grain surface-layer treatment of diatomaceous earth for insect control. Arh. Hig. Rada Toksikol. 51, 1 (2000).

    CAS  Google Scholar 

  26. A.F. Danil de Namor, E.L. Gamouz, S. Frangie, V. Martinez, L. Valiente, and O.A. Webb: Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. J. Hazard. Mater. 241, 14 (2012).

    Article  CAS  Google Scholar 

  27. D.C. Bennett, A. Yee, Y.J. Rhee, and K.M. Cheng: Effect of diatomaceous earth on parasite load, egg production, and egg quality of free-range organic laying hens. Poult. Sci. 201190, 1416 (2011).

    Article  CAS  Google Scholar 

  28. L. De Stefano, I. Rea, I. Rendina, M. De Stefano, and L. Moretti: Lensless light focusing with the centric marine diatom Coscinodiscus walesii. Opt. Express 15(26), 18082 (2007).

    Article  Google Scholar 

  29. J. Noyes, M. Sumper, and P. Vukusic: Light manipulation in a marine diatom. J. Mater. Res. 23(12), 3229 (2008).

    Article  CAS  Google Scholar 

  30. K. Kieu, C. Li, Y. Fang, G. Cohoon, O.D. Herrera, M. Hildebrand, K.H. Sandhage, and R.A. Norwood: Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Opt. Express 22(13), 15992 (2014).

    Article  CAS  Google Scholar 

  31. S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino: Optical properties of diatom silica frustule with special reference to blue light. J. Appl. Phys. 103(7), 074701 (2008).

    Article  CAS  Google Scholar 

  32. M.A. Ferrara, P. Dardano, L. De Stefano, I. Rea, G. Coppola, I. Rendina, R. Congestri, A. Antonucci, M. De Stefano, and E. De Tommasi: Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp.: Micro-optics from mother nature. Plos One 9(7), 1 (2014).

    Article  CAS  Google Scholar 

  33. J. Desclés, M. Vartanian, A-E. Harrak, M. Quinet, N. Bremond, G. Sapriel, J. Bibette, and P-J. Lopez: New tools for labeling silica in living diatoms. New Phytol. 177(3), 822 (2008).

    Article  CAS  Google Scholar 

  34. D. Vona, M. Lo Presti, S.R. Cicco, F. Palumbo, R. Ragni, and G.M. Farinola. Light emitting silica nanostructures by surface functionalization of diatom algae shells with a triethoxysilane-functionalized π-conjugated fluorophore. MRS Adv. (2015). doi: https://doi.org/10.1557/adv.2015.21.

  35. M. Kucki and T. Fuhrmann-Lieker: Staining diatoms with rhodamine dyes: Control of emission colour in photonic biocomposites. J. R. Soc., Interface. 9(69), 727 (2012).

    Article  CAS  Google Scholar 

  36. D. Losic, Y. Yang, M. Sinn, S. Simovic, B. Thierrya, and J. Addai-Mensaha: Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: Toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 46, 6323 (2010).

    Article  CAS  Google Scholar 

  37. M. Sinn, M. Bariana, Y. Yu, J. Addai-Mensah, and D. Losic: Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs. J. Biomater. Appl. 28(2), 163 (2013).

    Article  CAS  Google Scholar 

  38. T.D.H. Le, W. Bonani, G. Speranza, V. Sglavo, R. Ceccato, D. Maniglio, A. Motta, and C. Migliaresi: Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering. Mater. Sci. Eng., C 59, 471–479 (2016).

    Article  CAS  Google Scholar 

  39. S.R. Cicco, D. Vona, E. De Giglio, S. Cometa, M. Mattioli-Belmonte, F. Palumbo, R. Ragni, and G.M. Farinola: Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties. ChemPlusChem 80, 1104 (2015).

    Article  CAS  Google Scholar 

  40. D. Vona, L. Urbano, M.A. Bonifacio, E. De Giglio, S. Cometa, M. Mattioli-Belmonte, F. Palumbo, R. Ragni, S.R. Cicco, and G.M. Farinola: Data from two different culture conditions of Thalassiosira weissflogii diatom and from cleaning procedures for obtaining monodisperse nanostructured biosilica. Data in Brief 8, 312 (2016).

    Article  Google Scholar 

  41. B. Delalat, V.C. Sheppard, S.R. Ghaemi, S. Rao, C.A. Prestidge, G. McPhee, M-L. Rogers, J.F. Donoghue, V. Pillay, T.G. Johns, N. Kroger, and N.H. Voelcker: Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 6(8791), 1–11 (2015).

    Google Scholar 

  42. C.E.P. Bonilla, S. Trujillo, B. Demirdögen, J.E. Perilla, Y.M. Elcin, and J.L.G. Ribelles: New porous polycaprolactone–silica composites for bone regeneration. Mater. Sci. Eng., C 40, 418 (2014).

    Article  CAS  Google Scholar 

  43. S. Wang, X. Wang, F.G. Draenert, O. Albert, H.C. Schroder, V. Mailander, G. Mitov, and W.E.G. Muller: Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67, 292 (2014).

    Article  CAS  Google Scholar 

  44. D.K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G.L. Rorrer: Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv. Funct. Mater. 19, 926 (2009).

    Article  CAS  Google Scholar 

  45. H.E. Townley, K.L. Woon, F.P. Payne, H. White-Cooper, and A.R. Parker: Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnology 18, 295101 (2007).

    Article  CAS  Google Scholar 

  46. M. Lee, S. Lee, J.H. Lee, H.W. Lim, G.H. Seong, E.K. Lee, S.I. Chang, C.H. Oh, and J. Choo: Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens. Bioelectron. 26, 2135 (2011).

    Article  CAS  Google Scholar 

  47. A.J. Haes and R.P. Van Duyne: A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596 (2002).

    Article  CAS  Google Scholar 

  48. J. Yang, L. Zhen, F. Ren, J. Campbell, G.L. Rorrer, and A.X. Wang: Ultra-sensitive immunoassay biosensors using hybrid plasmonic-biosilica nanostructured materials. J. Biophoton. 8, 659 (2015).

    Article  CAS  Google Scholar 

  49. C. Jeffryes, R. Solanki, Y. Rangineni, W. Wang, C-H. Chang, and G.L. Rorrer: Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv. Mater. 20, 2633 (2008).

    Article  CAS  Google Scholar 

  50. C. Jeffryes, T. Gutu, J. Jiao, and G-L. Rorrer: Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mat. Sci. Eng., C 28(1), 107 (2008).

    Article  CAS  Google Scholar 

  51. J. Toster, K.S. Iyer, W. Xiang, F. Rosei, L. Spiccia, and C.L. Raston: Diatom frustules as light traps enhance DSSC efficiency. Nanoscale 5(3), 873 (2013).

    Article  CAS  Google Scholar 

  52. K-H. Sandhage, M-B. Dickerson, P-M. Huseman, F-M. Zalar, M-C. Carroll, M-R. Rondon, and E-C. Sandhage: A novel hybrid route to chemically–tailored, three–dimensional oxide nanostructures: The basic (bioclastic and shape–preserving inorganic conversion) process. Ceram. Eng. Sci. Proc. 23(4), 653 (2008).

    Google Scholar 

  53. K-H. Sandhage, M-B. Dickerson, P-M. Huseman, M-A. Caranna, J-D. Clifton, T-A. Bull, T-J. Heibel, W-R. Overton, and M-E-A. Schoenwaelder: Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14(6), 429 (2002).

    Article  CAS  Google Scholar 

  54. Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy, III, C.J. Summers, M. Liu, and K.H. Sandhage: Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446, 172 (2007).

    Article  CAS  Google Scholar 

  55. S. Chandrasekaran, M-J. Sweetman, K. Kant, W. Skinner, D. Losic, T. Nann, and N-H. Voelcker: Silicon diatom frustules as nanostructured photoelectrodes. Chem Commun. 50(72), 10441–10444 (2014).

    Article  CAS  Google Scholar 

  56. F. Li, Y. Xing, M. Huang, K.L. Li, T.T. Yu, Y.X. Zhang, and D. Losic: MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J. Mater. Chem. A 3, 7855 (2015).

    Article  CAS  Google Scholar 

  57. Z. Pan, S-J.L. Lerch, L. Xu, X. Li, Y-J. Chuang, J-Y. Howe, S-M. Mahurin, S. Dai, and M. Hildebrand: Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology. Sci. Reports 4, 1 (2014).

    CAS  Google Scholar 

  58. D. Losic, J-G. Mitchell, and N-H. Voelcker: Fabrication of gold nanostructures by templating from porous diatom frustules. New J. Chem. 30, 908 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca M. Farinola.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragni, R., Cicco, S., Vona, D. et al. Biosilica from diatoms microalgae: smart materials from bio-medicine to photonics. Journal of Materials Research 32, 279–291 (2017). https://doi.org/10.1557/jmr.2016.459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.459

Navigation