Skip to main content

Advertisement

Log in

In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This research was designed for the first time to investigate the photocatalytic activities of MoO3/g-C3N4 composite in converting CO2 to fuels under simulated sunlight irradiation. The composite was synthesized using a simple impregnation-heating method and MoO3 nanoparticles was in situ decorated on the g-C3N4 sheet. Characterization results indicated that the introduction of MoO3 nanoparticles into g-C3N4 fabricated a direct Z-scheme heterojunction structure. The effective interfacial charge-transfer across the heterojunction significantly promoted the separation efficiency of charge carriers. The optimal CO2 conversion rate of the composite reached 25.6 µmol/(h gcat), which was 2.7 times higher than that of g-C3N4. Additionally, the synthesized MoO3/g-C3N4 also presented excellent photoactivity in RhB degradation under visible-light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. T. Inoue, A. Fujishima, S. Konishi, and K. Honda: Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637 (1979).

    Article  CAS  Google Scholar 

  2. G.H. Liu, N. Hoivik, K.Y. Wang, and H. Jakobsen: Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol. Energy Mater. Sol. Cells 105, 53 (2012).

    Article  CAS  Google Scholar 

  3. M. Tahir and N.S. Amin: Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges. Renewable Sustainable Energy Rev. 25, 560 (2013).

    Article  CAS  Google Scholar 

  4. X. Li, J.Q. Wen, J.X. Low, Y.P. Fang, and J.G. Yu: Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 57, 70 (2014).

    Article  Google Scholar 

  5. L. Yuan and Y.J. Xu: Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 342, 154 (2015).

    Article  CAS  Google Scholar 

  6. J.Q. Wen, J. Xie, X.B. Chen, and X. Lia: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    Article  CAS  Google Scholar 

  7. S. Ye, R. Wang, M.Z. Wu, and Y.P. Yuan: A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 358, 15 (2015).

    Article  CAS  Google Scholar 

  8. K.L. He, J. Xie, X.Y. Luo, J.Q. Wen, S. Ma, X. Li, Y.P. Fang, and X.C. Zhang: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nanosheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38, 240 (2017).

    Article  CAS  Google Scholar 

  9. X.X. Wang, L.H. Zhang, H.J. Lin, Q.Y. Nong, Y. Wu, T.H. Wu, and Y.M. He: Synthesis and characterization of a ZrO2/g-C3N4 composite with enhanced visible-light photoactivity for rhodamine degradation. RSC Adv. 4, 40029 (2014).

    Article  CAS  Google Scholar 

  10. L.H. Zhao, L.H. Zhang, H.J. Lin, Q.Y. Nong, M. Cui, Y. Wu, and Y.M. He: Fabrication and characterization of hollow CdMoO4 coupled g-C3N4 heterojunction with enhanced photocatalytic activity. J. Hazard. Mater. 299, 333 (2015).

    Article  CAS  Google Scholar 

  11. T. Ohno, N. Murakami, T. Koyanagi, and Y. Yang: Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J. CO2 Util. 6, 17 (2014).

    Article  CAS  Google Scholar 

  12. Y.M. He, L.H. Zhang, B.T. Teng, and M.H. Fan: A new application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 49, 649 (2015).

    Article  CAS  Google Scholar 

  13. S. Zhou, Y. Liu, J.M. Li, Y.J. Wang, G.Y. Jiang, Z. Zhao, D.X. Wang, A.J. Duan, J. Liu, and Y.C. Wei: Facile in situ synthesis of graphitic carbon nitride (g-C3N4)–N–TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl. Catal., B. 158–159, 20 (2014).

    Article  Google Scholar 

  14. H.F. Shi, G.Q. Chen, C.L. Zhang, and Z.G. Zou: Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal. 4, 3637 (2014).

    Article  CAS  Google Scholar 

  15. Y.M. He, Y. Wang, L.H. Zhang, B.T. Teng, and M.H. Fan: High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal., B 168–169, 1 (2015).

    Google Scholar 

  16. Y.P. Yuan, S.W. Cao, Y.S. Liao, L.S. Yin, and C. Xue: Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Appl. Catal., B 140–141, 164 (2013).

    Article  Google Scholar 

  17. J. Luo, X.S. Zhou, L. Ma, and X.Y. Xu: Rational construction of Z-scheme Ag2CrO4/g-C3N4 composites with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 390, 357 (2016).

    Article  CAS  Google Scholar 

  18. J.L. Lv, K. Dai, J.F. Zhang, L. Geng, C.H. Liang, Q.C. Liu, G.P. Zhu, and C. Chen: Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties. Appl. Surf. Sci. 358, 377 (2015).

    Article  CAS  Google Scholar 

  19. L.Y. Huang, H. Xu, R.X. Zhang, X.N. Cheng, J.X. Xia, Y.G. Xu, and H.M. Li: Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity. Appl. Surf. Sci. 283, 25 (2013).

    Article  CAS  Google Scholar 

  20. Y.P. Li, L.Y. Huang, J.B. Xu, H. Xu, Y.G. Xu, J.X. Xia, and H.M. Li: Visible-light-induced blue MoO3–C3N4 composite with enhanced photocatalytic activity. Mater. Res. Bull. 70, 500 (2015).

    Article  CAS  Google Scholar 

  21. Y.M. He, L.H. Zhang, X.X. Wang, Y. Wu, H.J. Lin, L.H. Zhao, W.Z. Weng, H.L. Wan, and M.H. Fan: Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3/g-C3N4 composite under visible light irradiation. RSC Adv. 4, 13610 (2014).

    Article  CAS  Google Scholar 

  22. J.D. Xiao, Y.B. Xie, H.B. Cao, Y.Q. Wang, and Z.J. Zhao: g-C3N4-triggered super synergy between photocatalysis and ozonation attributed to promoted radical ˙OH generation. Catal. Commun. 66, 10 (2015).

    Article  CAS  Google Scholar 

  23. H.J. Yan, X.H. Xie, K.W. Liu, H.M. Cao, X.J. Zhang, and Y.L. Luo: Facile preparation of Co3O4 nanoparticles via thermal decomposition of Co(NO3)2 loading on C3N4. Powder Technol. 221, 199 (2012).

    Article  CAS  Google Scholar 

  24. H. Xu, J. Yan, Y.G. Xu, Y.H. Song, H.M. Li, J.X. Xia, C.J. Huang, and H.L. Wan: Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal., B 129, 182 (2013).

    Article  CAS  Google Scholar 

  25. S.P. Adhikari, H.R. Pant, H.J. Kim, C.H. Park, and C.S. Kim: Deposition of ZnO flowers on the surface of g-C3N4 sheets via hydrothermal process. Ceram. Int. 41, 12923 (2015).

    Article  Google Scholar 

  26. W.C. Peng and X.Y. Li: Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation. Catal. Commun. 49, 63 (2014).

    Article  CAS  Google Scholar 

  27. S. Tonda, S. Kumar, and V. Shanker: In situ growth strategy for highly efficient Ag2CO3/g-C3N4 hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation. J. Environ. Chem. Eng. 3, 852 (2015).

    Article  CAS  Google Scholar 

  28. B. Chai, F.Y. Zou, and W.J. Chen: Facile synthesis of Ag3PO4/C3N4 composites with improved visible light photocatalytic activity. J. Mater. Res. 30, 1128 (2015).

    Article  CAS  Google Scholar 

  29. M. Wang, M.H. Fang, C. Tang, and L.N. Zhang: A C3N4/Bi2WO6 organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).

    Article  CAS  Google Scholar 

  30. J.X. Yu, Q.Y. Nong, X.L. Jiang, X.Z. Liu, Y. Wu, and Y.M. He: Novel Fe2(MoO4)3/g-C3N4 heterojunction for efficient contaminant removal and hydrogen production under visible light irradiation. Sol. Energy 139, 355 (2016).

    Article  CAS  Google Scholar 

  31. K. Vignesh, A. Suganthi, B.K. Min, and M. Kang: Photocatalytic activity of magnetically recoverable MnFe2O4/g-C3N4/TiO2 nanocomposite under simulated solar light irradiation. J. Mol. Catal. A: Chem. 395, 373 (2014).

    Article  CAS  Google Scholar 

  32. G.T. Li, K.H. Wong, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, and P.K. Wong: Degradation of acid orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere 6, 1185 (2009).

    Article  Google Scholar 

  33. D.B. Xu, W.D. Shi, C.J. Song, M. Chen, S.B. Yang, W.Q. Fan, and B.Y. Chen: In situ synthesis and enhanced photocatalytic activity of visible-light-driven plasmonic Ag/AgCl/NaTaO3 nanocubes photocatalysts. Appl. Catal., B 191, 228 (2016).

    Article  CAS  Google Scholar 

  34. D.F. Wang, T. Kako, and J.H. Ye: Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. J. Am. Chem. Soc. 130, 2724 (2008).

    Article  CAS  Google Scholar 

  35. Y.M. He, L.H. Zhang, M.H. Fan, X.X. Wang, M.L. Walbridge, Q.Y. Nong, Y. Wu, and L.H. Zhao: Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energy Mater. Sol. Cells 137, 175 (2015).

    Article  CAS  Google Scholar 

  36. W.K. Jo and N.C.S. Selvam: Enhanced visible light-driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite. J. Hazard. Mater. 299, 462 (2015).

    Article  CAS  Google Scholar 

  37. Y. Yan, T.R. Chen, Y.C. Zou, and Y. Wang: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383–1392 (2016).

    Article  CAS  Google Scholar 

  38. J. Thomas, S. Radhika, and M. Yoon: Nd3+-doped TiO2 nanoparticles incorporated with heteropoly phosphotungstic acid: A novel solar photocatalyst for degradation of 4-chlorophenol in water. J. Mol. Catal. A: Chem. 411, 146 (2016).

    Article  CAS  Google Scholar 

  39. Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.G. Xi, and X.P. Dong: Hydrothermal synthesis of graphitic carbon nitride–Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces 5, 7079 (2013).

    Article  CAS  Google Scholar 

  40. Q.Q. Lang, Y.J. Yang, Y.Z. Zhu, W.L. Hu, W.Y. Jiang, S.X. Zhong, P.J. Gong, B.T. Teng, L.H. Zhao, and S. Bai: High-index facet engineering of PtCu cocatalysts for superior photocatalytic reduction of CO2 to CH4. J. Mater. Chem. A 5, 6686 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by Natural Science Foundation of Zhejiang Province in China (LY16B030002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming He.

Supplementary Materials

43578_2017_32193660_MOESM1_ESM.docx

In-situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Zeng, L., Chen, Y. et al. In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. Journal of Materials Research 32, 3660–3668 (2017). https://doi.org/10.1557/jmr.2017.271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.271

Navigation