Skip to main content
Log in

Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Shot-peened CM400 maraging steel was used to study the mechanism of enhanced notch fatigue properties of ultra-high strength materials. After shot peening, the specimen surface became rougher, but the transversal machining traces were reduced. The yield strength was slightly improved while the ultimate tensile strength and hardness maintained constant; as a result, the fatigue limit was promoted by about 1.5 times. The nucleated sites of the fatigue fracture were partly changed from the surface to subsurface/interior of the specimen. To further analyze the influencing factors of fatigue properties, the fatigue damage process may be resolved to two aspects: (a) fatigue damage rate affected by shear deformation and (b) fatigue damage tolerance controlled by the dilatation fracture process. Considering the stress state near the notch tip, the hydrostatic stress and maximum shear stress are considered for better understanding these two aspects. It is observed that the fatigue damage tolerance increased while the fatigue damage rate decreased after shot peening. Therefore, the notch fatigue properties of CM400 maraging steels can effectively be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S. Suresh: Fatigue of Materials, 2nd ed. (Cambridge University Press, New York, 1998).

    Book  Google Scholar 

  2. L. Tóth and S.Y. Yarema: Formation of the science of fatigue of metals. Part 1. Mater. Sci. 42, 673 (2006).

    Article  Google Scholar 

  3. G. Aggen, F.W. Akstens, C.M. Allen, H.S. Avery, P. Babu, A.M. Bayer: ASM Handbook Properties and Selection: Iron, Steels and High-Performance Alloys (ASM International, USA, 1990).

    Google Scholar 

  4. Y.L. Lee, J. Pan, R.B. Hathaway, and M.E. Barkey: Fatigue Testing and Analysis (Theory and Practice) (Elsevier Butter-worth Heinemann, Amsterdam, Boston, Heidelberg, 2005).

    Google Scholar 

  5. P.G. Frorrest: Fatigue of Metals (Pergamon Press, Oxford, 1962).

    Google Scholar 

  6. M.F. Garwood, H.H. Zurburg, and M.A. Erickson: Interpretation of tests and correlation with service. In Correlation of Laboratory Tests and Service Performance (American Society for Metals, Philadelphia, PA, 1951); p. 1.

    Google Scholar 

  7. J.C. Pang, S.X. Li, Z.G. Wang, and Z.F. Zhang: General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng., A 564, 331 (2013).

    Article  CAS  Google Scholar 

  8. F. Habiby, T.N. Siddiqui, H. Hussain, M.A. Khan, A. ul Haq, and A.Q. Khan: Machine-induced phase transformation in a maraging steel. Mater. Sci. Eng., A 159, 261 (1992).

    Article  Google Scholar 

  9. F. Habiby, T.N. Siddiqui, H. Hussain, A. ul Haq, and A.Q. Khan: Lattice changes in the martensitic phase due to ageing in 18 wt% nickel maraging steel grade 350. J. Mater. Sci. 31, 305 (1996).

    Article  CAS  Google Scholar 

  10. K.V. Rajkumar, B.P.C. Rao, B. Sasi, A. Kumar, T. Jayakumar, B. Raj, and K.K. Ray: Characterization of aging behaviour in M250 grade maraging steel using eddy current non-destructive methodology. Mater. Sci. Eng., A 464, 233 (2007).

    Article  Google Scholar 

  11. V.K. Vasudevan, S.J. Kim, and C.M. Wayman: Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels. Metall. Trans. A 21, 2655 (1990).

    Article  Google Scholar 

  12. Y. He, K. Yang, W. Qu, F. Kong, and G. Su: Strengthening and toughening of a 2800-MPa grade maraging steel. Mater. Lett. 56, 763 (2002).

    Article  CAS  Google Scholar 

  13. W. Wang, W. Yan, Q. Duan, Y. Shan, Z. Zhang, and K. Yang: Study on fatigue property of a new 2.8 GPa grade maraging steel. Mater. Sci. Eng., A 527, 3057 (2010).

    Article  Google Scholar 

  14. K. Hussain, A. Tauqir, A. ul Haq, and A.Q. Khan: Influence of gas nitriding on fatigue resistance of maraging steel. Int. J. Fatigue 21, 163 (1999).

    Article  CAS  Google Scholar 

  15. R. Decker, J. Eash, and A. Goldman: 18% nickel maraging steel. Trans. ASM 55, 58 (1962).

    Google Scholar 

  16. H. Rack and D. Kalish: The strength and fracture toughness of 18 Ni (350) maraging steel. Metall. Mater. Trans. B 2, 3011 (1971).

    Article  CAS  Google Scholar 

  17. D.G. Lee, K.C. Jang, J.M. Kuk, and I.S. Kim: The influence of niobium and aging treatment in the 18% Ni maraging steel. J. Mater. Process. Technol. 162, 342 (2005).

    Article  Google Scholar 

  18. P. Peyre, R. Fabbro, P. Merrien, and H. Lieurade: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater. Sci. Eng., A 210, 102 (1996).

    Article  Google Scholar 

  19. M. Torres and H. Voorwald: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int. J. Fatigue 24, 877 (2002).

    Article  CAS  Google Scholar 

  20. P. Zhang and J. Lindemann: Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scr. Mater. 52, 485 (2005).

    Article  CAS  Google Scholar 

  21. G. Farrahi, J. Lebrijn, and D. Couratin: Effect of shot peening on residual stress and fatigue life of a spring steel. Fatigue Fract. Eng. Mater. Struct. 18, 211 (1995).

    Article  CAS  Google Scholar 

  22. R.H. Li, Z.J. Zhang, P. Zhang, and Z.F. Zhang: Improved fatigue properties of ultrafine-grained copper under cyclic torsion loading. Acta Mater. 61, 5857 (2013).

    Article  CAS  Google Scholar 

  23. T. Roland, D. Retraint, K. Lu, and J. Lu: Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater. 54, 1949 (2006).

    Article  CAS  Google Scholar 

  24. P. Zhang, S.X. Li, and Z.F. Zhang: General relationship between strength and hardness. Mater. Sci. Eng., A 529, 62 (2011).

    Article  CAS  Google Scholar 

  25. X.H. An, S.D. Wu, Z.G. Wang, and Z.F. Zhang: Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys. Acta Mater. 74, 200 (2014).

    Article  CAS  Google Scholar 

  26. Z. Zhang, X. An, P. Zhang, M. Yang, G. Yang, S. Wu, and Z. Zhang: Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu–Zn alloy processed by equal-channel angular pressing. Scr. Mater. 68, 389 (2013).

    Article  CAS  Google Scholar 

  27. Z.Q. Liu, R.T. Qu, and Z.F. Zhang: Elasticity dominates strength and failure in metallic glasses. J. Appl. Phys. 117, 014901 (2015).

    Article  Google Scholar 

  28. P. Li, S.X. Li, Z.G. Wang, and Z.F. Zhang: Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals. Prog. Mater. Sci. 56, 328 (2011).

    Article  CAS  Google Scholar 

  29. L.L. Li, Z.J. Zhang, P. Zhang, Z.G. Wang, and Z.F. Zhang: Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary. Nat. Commun. 5, 3536 (2014).

    Article  CAS  Google Scholar 

  30. V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, and M.A. Meyers: Void growth by dislocation emission. Acta Mater. 52, 1397 (2004).

    Article  CAS  Google Scholar 

  31. R. Qu, P. Zhang, and Z. Zhang: Notch effect of materials: Strengthening or weakening? J. Mater. Sci. Technol. 30, 599 (2014).

    Article  CAS  Google Scholar 

  32. S. Timoshenko and J.N. Goodier: Theory of Elasticity (McGraw Hill, New York, USA, 1970).

    Google Scholar 

  33. Y.Q. Xie, Z.X. Lin, and H.J. Ding: Elastic Mechanics (Zhejiang University Press, Hangzhou, China, 1988).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. W. Wang, H.H. Su for materials preparation, SEM observations. This work was financially supported by the National Natural Science Foundation of China (NSFC) under grant Nos. 51331007 and 51301179.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhang or Zhe-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Qq., Wang, B., Zhang, P. et al. Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening. Journal of Materials Research 32, 4424–4432 (2017). https://doi.org/10.1557/jmr.2017.358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.358

Navigation