Skip to main content
Log in

Fabrication of nanocomposites through diffusion bonding under high-pressure torsion

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This report summarizes a recent study demonstrating simple and rapid synthesis of a new Al–Mg alloy system and ultimately synthesizing a metal matrix nanocomposite, which was achieved by processing stacked disks of the two dissimilar metals by conventional high-pressure torsion (HPT) processing. The synthesized Al–Mg alloy system exhibits exceptionally high hardness through rapid diffusion bonding and simultaneous nucleation of intermetallic phases with increased numbers of HPT turns through 20, and improved plasticity was demonstrated by increasing strain rate sensitivity in the alloy system after post-deformation annealing. An additional experiment demonstrated that the alternate stacking of high numbers of dissimilar metal disks may produce a faster metal mixture during HPT. Metal combinations of Al–Cu, Al–Fe, and Al–Ti were processed by the same HPT procedure from separate pure metals to examine the feasibility of the processing technique. The microstructural analysis confirmed the capability of HPT for the formation of heterostructures across the disk diameters in these processed alloy systems. The HPT processing demonstrates a considerable potential for the joining and bonding of dissimilar metals at room temperature and the expeditious fabrication of a wide range of new metal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. K. Lu: The future of metals. Science 328, 319 (2010).

    Article  CAS  Google Scholar 

  2. P.V. Liddicoat, X.Z. Liao, Y.T. Zhu, Y.H. Zhao, E.J. Lavernia, M.Y. Murashkin, R.Z. Valiev, and S.P. Ringer: New hierarchy of solute architecture breaks strength ceiling in a nanocrystalline aluminium alloy. Nat. Commun. 1, 63/1 (2010).

    Article  CAS  Google Scholar 

  3. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2010).

    Article  Google Scholar 

  4. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Fundamentals of superior properties in bulk nanoSPD materials. Mater. Res. Lett. 4, 1 (2016).

    Article  CAS  Google Scholar 

  5. Y. Estrin and A. Vinogradov: Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 651, 782 (2013).

    Article  CAS  Google Scholar 

  6. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).

    CAS  Google Scholar 

  7. T.G. Langdon: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).

    Article  CAS  Google Scholar 

  8. A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas, A. Quivy, R.Z. Valiev, and A. Mukherjee: Nanocrystalline structure and phase transformation of the intermetallic compound TiAl processed by severe plastic deformation. Nanostruct. Mater. 11, 17 (1999).

    Article  CAS  Google Scholar 

  9. N.V. Kazantseva, N.V. Mushnikov, A.G. Popov, P.B. Terent’ev, and V.P. Pilyugin: Severe plastic deformation and hydrogenation of the titanium aluminides. J. Alloy. Comp. 509, 9307 (2011).

    Article  CAS  Google Scholar 

  10. B. Srinivasarao, A.P. Zhilyaev, R. Muñoz-Moreno, and M.T. Pérez-Prado: Effect of high pressure torsion on the microstructure evolution of a gamma Ti–45Al–2Nb–2Mn–0.8 vol% TiB2 alloy. J. Mater. Sci. 48, 4599 (2013).

    Article  CAS  Google Scholar 

  11. J-K. Han, X. Li, R. Dippenaar, K-D. Liss, and M. Kawasaki: Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion. Mater. Sci. Eng., A 714, 84 (2018).

    Article  CAS  Google Scholar 

  12. A.P. Zhilyaev, A.A. Gimazov, G.I. Raab, and T.G. Langdon: Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Mater. Sci. Eng., A 486, 123 (2008).

    Article  CAS  Google Scholar 

  13. K. Edalati, Y. Yokoyama, and Z. Horita: High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10. Mater. Trans. 51, 23 (2010).

    Article  CAS  Google Scholar 

  14. A.V. Korznikov, I.M. Safarov, D.V. Laptionok, and R.Z. Valiev: Structure and properties of superfine-grained iron compacted out of ultradisperse powder. Acta Metall. Mater. 39, 3193 (1991).

    Article  CAS  Google Scholar 

  15. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Mater. Sci. Eng., A 282, 78 (2000).

    Article  Google Scholar 

  16. K. Edalati, Z. Horita, H. Fujiwara, and K. Ameyama: Cold consolidation of ball-milled titanium powders using high-pressure torsion. Metall. Mater. Trans. A 41, 3308 (2010).

    Article  CAS  Google Scholar 

  17. J.M. Cubero-Sesin and Z. Horita: Powder consolidation of Al–10 wt% Fe alloy by high-pressure torsion. Mater. Sci. Eng., A 558, 462 (2012).

    Article  CAS  Google Scholar 

  18. Y. Zhang, S. Sabbaghianrad, H. Yang, T. Topping, T.G. Langdon, E.J. Lavernia, J.M. Schoenung, and S. Nutt: Two-step SPD processing of a trimodal Al-based nano-composite. Metall. Mater. Trans. A 46, 5877 (2015).

    Article  CAS  Google Scholar 

  19. A.P. Zhilyaev, G. Ringot, Y. Huang, J.M. Cabrera, and T.G. Langdon: Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion. Mater. Sci. Eng., A 688, 498 (2017).

    Article  CAS  Google Scholar 

  20. B. Ahn, A.P. Zhilyaev, H-J. Lee, M. Kawasaki, and T.G. Langdon: Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater. Sci. Eng., A 635, 109 (2015).

    Article  CAS  Google Scholar 

  21. B. Ahn, H-J. Lee, I.C. Choi, M. Kawasaki, J-I. Jang, and T.G. Langdon: Micro-mechanical behavior of an exceptionally strong metal matrix nanocomposite processed by high-pressure torsion. Adv. Eng. Mater. 18, 1001 (2016).

    Article  CAS  Google Scholar 

  22. M. Kawasaki, B. Ahn, H-J. Lee, A.P. Zhilyaev, and T.G. Langdon: Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding. J. Mater. Res. 31, 88 (2016).

    Article  CAS  Google Scholar 

  23. J-K. Han, H-J. Lee, J-i. Jang, M. Kawasaki, and T.G. Langdon: Micro-mechanical and tribological properties of aluminum–magnesium nanocomposites processed by high-pressure torsion. Mater. Sci. Eng., A 684, 318 (2017).

    Article  CAS  Google Scholar 

  24. R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon: Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng., A 528, 8198 (2011).

    Article  CAS  Google Scholar 

  25. M. Kawasaki: Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J. Mater. Sci. 49, 18 (2014).

    Article  CAS  Google Scholar 

  26. M. Kawasaki, S.N. Alhajeri, C. Xu, and T.G. Langdon: The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion. Mater. Sci. Eng., A 529, 345 (2011).

    Article  CAS  Google Scholar 

  27. H-J. Lee, S.K. Lee, K.H. Jung, G.A. Lee, B. Ahn, M. Kawasaki, and T.G. Langdon: Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng., A 630, 90 (2015).

    Article  CAS  Google Scholar 

  28. S. Samson: The crystal structure of the phase β-Mg2Al3. Acta Crystallogr. 19, 401 (1965).

    Article  CAS  Google Scholar 

  29. L. Lutterotti: Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010).

    Article  CAS  Google Scholar 

  30. B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  31. S. Shim, J-I. Jang, and G.M. Pharr: Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation. Acta Mater. 56, 3824 (2008).

    Article  CAS  Google Scholar 

  32. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).

    Article  CAS  Google Scholar 

  33. R. Valiev: Materials science: Nanomaterial advantage. Nature 419, 887 (2002).

    Article  CAS  Google Scholar 

  34. R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    Article  CAS  Google Scholar 

  35. P. Kumar, M. Kawasaki, and T.G. Langdon: Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. J. Mater. Sci. 51, 7 (2016).

    Article  CAS  Google Scholar 

  36. I.A. Ovid’ko, R.Z. Valiev, and Y.T. Zhu: Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci. 94, 462 (2018).

    Article  CAS  Google Scholar 

  37. J. Mueller, K. Durst, D. Amberger, and M. Göken: Local investigations of the mechanical properties of ultrafine grained metals by nanoindentations. Mater. Sci. Forum 31, 503 (2006).

    Google Scholar 

  38. A. Böhner, V. Maier, K. Durst, H.W. Höppel, and M. Göken: Macro- and nanomechanical properties and strain rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials. Adv. Eng. Mater. 13, 251 (2011).

    Article  CAS  Google Scholar 

  39. V. Maier, B. Merle, M. Göken, and K. Durst: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28, 1177 (2013).

    Article  CAS  Google Scholar 

  40. J.M. Wheeler, V. Maier, K. Durst, M. Göken, and J. Michler: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108 (2013).

    Article  CAS  Google Scholar 

  41. I-C. Choi, D-H. Lee, B. Ahn, K. Durst, M. Kawasaki, T.G. Langdon, and J-i. Jang: Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. Scripta Mater. 94, 44 (2015).

    Article  CAS  Google Scholar 

  42. M. Kawasaki, B. Ahn, P. Kumar, J-i. Jang, and T.G. Langdon: Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques. Adv. Eng. Mater. 19, 1600578 (2017).

    Article  CAS  Google Scholar 

  43. R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee: The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scripta Mater. 49, 669 (2003).

    Article  CAS  Google Scholar 

  44. M. Kawasaki and T.G. Langdon: Using severe plastic deformation to fabricate strong metal matrix composites. Mater. Res. 20(Suppl. 1), 46 (2017).

    Article  Google Scholar 

  45. A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, and T.G. Langdon: Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Mater. 44, 2753 (2001).

    Article  CAS  Google Scholar 

  46. H. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov, and T.C. Lowe: Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater. Sci. Eng., A 290, 128 (2000).

    Article  Google Scholar 

  47. A.P. Zhilyaev, K. Oh-ishi, T.G. Langdon, and T.R. McNelley: Microstructural evolution in commercial purity aluminum during high-pressure torsion. Mater. Sci. Eng., A 277, 410 (2005).

    Google Scholar 

  48. S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde: Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 59, 1974 (2011).

    Article  CAS  Google Scholar 

  49. D-H. Lee, I-C. Choi, M-Y. Seok, J. He, Z. Lu, J-Y. Suh, M. Kawasaki, T.G. Langdon, and J-i. Jang: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).

    Article  CAS  Google Scholar 

  50. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev: Review: Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng., A 540, 1 (2012).

    Article  CAS  Google Scholar 

  51. K. Edalati, Y. Hashiguchi, P.H.R. Pereira, Z. Horita, and T.G. Langdon: Effect of temperature rise on microstructural evolution during high-pressure torsion. Mater. Sci. Eng., A 714, 167 (2018).

    Article  CAS  Google Scholar 

  52. K. Oh-ishi, K. Edalati, H.S. Kim, K. Hono, and Z. Horita: High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater. 61, 3482 (2013).

    Article  CAS  Google Scholar 

  53. O. Bouaziz, H.S. Kim, and Y. Estrin: Architecturing of metal-based composites with concurrent nanostructuring: A new paradigm of materials design. Adv. Eng. Mater. 15, 336 (2013).

    Article  CAS  Google Scholar 

  54. X. Qiao, X. Li, X. Zhang, Y. Chen, M. Zheng, I.S. Golovin, N. Gao, and M.J. Starink: Intermetallics formed at interface of ultrafine grained Al/Mg bi-layered disks processed by high pressure torsion at room temperature. Mater. Lett. 181, 187 (2016).

    Article  CAS  Google Scholar 

  55. N. Ibrahim, M. Peterlechner, F. Emeis, M. Wegner, S.V. Divinski, and G. Wilde: Mechanical alloying via high-pressure torsion of the immiscible Cu50Ta50 system. Mater. Sci. Eng., A 685, 19 (2017).

    Article  CAS  Google Scholar 

  56. K. Edalati and Z. Horita: Universal plot for hardness variation in pure metals processed by high-pressure torsion. Mater. Trans. 51, 1051 (2010).

    Article  CAS  Google Scholar 

  57. Z. Lee, S.R. Nutt, R. Rodriguez, R.W. Hayes, and E.J. Lavernia: Microstructural evolution and deformation of cryomilled nanocrystalline Al–Ti–Cu alloy. Metall. Mater. Trans. A 34, 1473 (2003).

    Article  Google Scholar 

  58. K. Edalati, S. Toh, H. Iwaoka, M. Watanabe, Z. Horita, D. Kashioka, K. Kishida, and H. Inui: Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins. Scripta Mater. 67, 814 (2012).

    Article  CAS  Google Scholar 

  59. K. Martinsen, S.J. Hu, and B.E. Carlson: Joining of dissimilar materials. CIRP Ann. 64, 679 (2015).

    Article  Google Scholar 

  60. X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu: Synergetic strengthening by gradient structure. Mater. Res. Lett. 2, 185 (2014).

    Article  CAS  Google Scholar 

  61. K. Lu: Making strong nanomaterials ductile with gradient. Science 345, 1455 (2014).

    Article  CAS  Google Scholar 

  62. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu: Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. U. S. A. 111, 7197 (2014).

    Article  CAS  Google Scholar 

  63. Y. Liu, B. Jin, and J. Lu: Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment. Mater. Sci. Eng., A 636, 446 (2015).

    Article  CAS  Google Scholar 

  64. X. Wu and Y. Zhu: Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 5, 527 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (Nos. 2015R1A5A1037627 and 2017R1A2B4012255) (DHL and JIJ) and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, M., Han, JK., Lee, DH. et al. Fabrication of nanocomposites through diffusion bonding under high-pressure torsion. Journal of Materials Research 33, 2700–2710 (2018). https://doi.org/10.1557/jmr.2018.205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.205

Navigation