Skip to main content
Log in

Enhanced fatigue performance and surface mechanical properties of AISI 304 stainless steel induced by electropulsing-assisted ultrasonic surface rolling process

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The evolution of fatigue performance and surface mechanical properties of AISI 304 stainless steel induced by the electropulsing-assisted ultrasonic surface rolling process (EP-USRP) was systematically investigated by integrating instrumented indentation, scanning electron microscopy with electron backscatter diffraction, and transmission electron microscopy. The results indicate that higher hardness, greater strength, finer ultra-refined grains, and higher residual compressive stress are formed within the strengthened layer compared with the original ultrasonic surface rolling process (USRP). EP-USRP with the optimized experimental parameters can produce a higher average rotating bending fatigue strength for AISI 304 stainless steel than USRP. Anomalously and noteworthily, all fatigue specimens treated by EP-USRP showed an incomplete fracture, revealing a higher reservation of safety in practical engineering applications. The further modified structure strengthening and stress strengthening induced by EP-USRP are likely the primary intrinsic reasons for the observed phenomena. Furthermore, the influence mechanism of EP-USRP was discussed scrupulously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely: Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V. Mater. Sci. Eng., A 655, 100 (2016).

    CAS  Google Scholar 

  2. H. Wang, G. Song, and G. Tang: Evolution of surface mechanical properties and microstructure of Ti–6Al–4V alloy induced by electropulsing-assisted ultrasonic surface rolling process. J. Alloys Compd. 681, 146 (2016).

    CAS  Google Scholar 

  3. K. Shibanuma, K. Ueda, H. Ito, Y. Nemoto, M. Kinefuchi, K. Suzuki, and M. Enoki: Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth. Mater. Des. 139, 269 (2018).

    CAS  Google Scholar 

  4. S. Taheri, L. Vincent, and J-C. Le-Roux: Classification of metallic alloys for fatigue damage accumulation: A conservative model under strain control for 304 stainless steels. Int. J. Fatigue 70, 73 (2015).

    CAS  Google Scholar 

  5. Y. Bai, M. Akita, Y. Uematsu, T. Kakiuchi, Y. Nakamura, and M. Nakajima: Improvement of fatigue properties in type 304 stainless steel by annealing treatment in nitrogen gas. Mater. Sci. Eng., A 607, 578 (2014).

    CAS  Google Scholar 

  6. M. Boeff, H. ul Hassan, and A. Hartmaier: Micromechanical modeling of fatigue crack initiation in polycrystals. J. Mater. Res. 32, 4375 (2017).

    CAS  Google Scholar 

  7. Q-q. Duan, B. Wang, P. Zhang, K. Yang, and Z-F. Zhang: Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening. J. Mater. Res. 32, 4424 (2017).

    CAS  Google Scholar 

  8. H. Wang, G. Song, and G. Tang: Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process. Surf. Coat. Technol. 282, 149 (2015).

    CAS  Google Scholar 

  9. H. Wang, G. Song, and G. Tang: Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process. Mater. Sci. Eng., A 662, 456 (2016).

    CAS  Google Scholar 

  10. R. Wang and J. Ru: Overall evaluation of the effect of residual stress induced by shot peening in the improvement of fatigue fracture resistance for metallic materials. Chin. J. Mech. Eng. 28, 416 (2015).

    Google Scholar 

  11. S. Suresh and A.E. Giannakopoulos: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755 (1998).

    CAS  Google Scholar 

  12. A.C. Fischer-Cripps: A review of analysis methods for sub-micron indentation testing. Vacuum 58, 569 (2000).

    CAS  Google Scholar 

  13. L.M. Farrissey and P.E. McHugh: Determination of elastic and plastic material properties using indentation: Development of method and application to a thin surface coating. Mater. Sci. Eng., A 399, 254 (2005).

    Google Scholar 

  14. N. Ogasawara, N. Chiba, and X. Chen: Measuring the plastic properties of bulk materials by single indentation test. Scr. Mater. 54, 65 (2006).

    CAS  Google Scholar 

  15. H. Lan and T.A. Venkatesh: Determination of the elastic and plastic properties of materials through instrumented indentation with reduced sensitivity. Acta Mater. 55, 2025 (2007).

    CAS  Google Scholar 

  16. Y. Liu, X. Zhao, and D. Wang: Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation. Mater. Sci. Eng., A 600, 21 (2014).

    CAS  Google Scholar 

  17. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    CAS  Google Scholar 

  18. Y. Chang, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhong, Q. Dong, S.R. Mannava, and V.K. Vasudevan: Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility. Mater. Sci. Eng., A 613, 274 (2014).

    Google Scholar 

  19. X. Yang, J. Zhou, and X. Ling: Study on plastic damage of AISI 304 stainless steel induced by ultrasonic impact treatment. Mater. Des. 36, 477 (2012).

    CAS  Google Scholar 

  20. I. Nikitin and M. Besel: Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045. Mater. Sci. Eng., A 491, 297 (2008).

    Google Scholar 

  21. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt: Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Mater. Des. 104, 174 (2016).

    CAS  Google Scholar 

  22. L. Yang, N.R. Tao, K. Lu, and L. Lu: Enhanced fatigue resistance of Cu with a gradient nanograined surface layer. Scr. Mater. 68, 801 (2013).

    CAS  Google Scholar 

  23. G.J. Deng, S.T. Tu, Q.Q. Wang, X.C. Zhang, and F.Z. Xuan: Small fatigue crack growth mechanisms of 304 stainless steel under different stress levels. Int. J. Fatigue 64, 14 (2014).

    CAS  Google Scholar 

  24. M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi, S. Matsuoka, and E. Takeuchi: Fatigue fracture mechanism maps for a type 304 stainless steel. Metall. Mater. Trans. A 35A, 1311 (2004).

    CAS  Google Scholar 

  25. A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, and J. Lu: The influence of strain rate on the microstructure transition of 304 stainless steel. Acta Mater. 59, 3697 (2011).

    CAS  Google Scholar 

  26. C. Ye, S. Suslov, D. Lin, and G.J. Cheng: Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties. Philos. Mag. 92, 1369 (2012).

    CAS  Google Scholar 

  27. J. Fan and T. Fu: Toughened austenitic stainless steel by surface severe plastic deformation. Mater. Sci. Eng., A 552, 359 (2012).

    CAS  Google Scholar 

  28. H.W. Zhang, G. Liu, Z.K. Hei, J. Lu, and K. Lu: Martensitic phase transformationinduced by surface mechanical attrition treatment—II. Grain refinement mechanism. Acta Metall. Sin. 39, 347 (2003).

    CAS  Google Scholar 

  29. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, and K. Lu: Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871 (2003).

    CAS  Google Scholar 

  30. K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu: Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 54, 5281 (2006).

    CAS  Google Scholar 

  31. K. Lu and J. Lu: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng., A 375, 38 (2004).

    Google Scholar 

  32. D. Kulawinski, M. Hoffmann, T. Lippmann, G. Lamprecht, A. Weidner, S. Henkel, and H. Biermann: Isothermal and thermo-mechanical fatigue behavior of 16Mo3 steel coated with high-velocity oxy-fuel sprayed nickel-base alloy under uniaxial as well as biaxial-planar loading. J. Mater. Res. 32, 4411 (2017).

    CAS  Google Scholar 

  33. L. Remy and A. Pineau: Temperature-dependence of stacking-fault energy in close-packed metals and alloys. Mater. Sci. Eng. 36, 47 (1978).

    CAS  Google Scholar 

  34. K. Ishida: Direct estimation of stacking-fault energy by thermodynamic analysis. Phys. Status Solidi A 36, 717 (1976).

    CAS  Google Scholar 

  35. H. Conrad, N. Karam, and S. Mannan: Effect of electric-current pulses on the recrystallization of copper. Scr. Metall. 17, 411 (1983).

    CAS  Google Scholar 

  36. V.E. Gromov, Y.F. Ivanov, O.A. Stolboushkina, and S.V. Konovalov: Dislocation substructure evolution on Al creep under the action of the weak electric potential. Mater. Sci. Eng., A 527, 858 (2010).

    Google Scholar 

  37. Y. Zhao, B. Ma, H. Guo, J. Ma, Q. Yang, and J. Song: Electropulsing strengthened 2 GPa boron steel with good ductility. Mater. Des. 43, 195 (2013).

    CAS  Google Scholar 

  38. R.S. Qin, A. Rahnama, W.J. Lu, X.F. Zhang, and B. Elliott-Bowman: Electropulsed steels. Mater. Sci. Technol. 30, 1040 (2014).

    CAS  Google Scholar 

  39. A. Rahnama and R.S. Qin: Electropulse-induced microstructural evolution in a ferritic-pearlitic 0.14% C steel. Scr. Mater. 96, 17 (2015).

    CAS  Google Scholar 

  40. A. Rahnama and R.S. Qin: The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel. Mater. Sci. Eng., A 627, 145 (2015).

    CAS  Google Scholar 

  41. K.V. Sosnin, Y.F. Ivanov, V.E. Gromov, E.A. Budovskikh, and D.A. Romanov: Structure and properties of surface layers obtained due to titanium-surface alloying by yttrium via combined electron-ion-plasma treatment. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8, 1286 (2014).

    CAS  Google Scholar 

  42. X. Li and K. Lu: Playing with defects in metals. Nat. Mater. 16, 700 (2017).

    CAS  Google Scholar 

  43. X.C. Liu, H.W. Zhang, and K. Lu: Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337 (2013).

    CAS  Google Scholar 

  44. R. Qin: Using electric current to surpass the microstructure breakup limit. Sci. Rep. 7, 41451 (2017).

    CAS  Google Scholar 

  45. R.S. Qin and A. Bhowmik: Computational thermodynamics in electric current metallurgy. Mater. Sci. Technol. 31, 1560 (2015).

    CAS  Google Scholar 

  46. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292 (2017).

    CAS  Google Scholar 

  47. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    CAS  Google Scholar 

  48. A.J. Detor and C.A. Schuh: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).

    CAS  Google Scholar 

  49. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  50. E.O. Hall: The deformation and ageing of mild steel. III. Discussion of results. Proc. Phys. Soc., London, Sect. B 64, 747 (1951).

    Google Scholar 

  51. K. Lu: Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 10619 (2016).

    Google Scholar 

  52. A. Hasnaoui, H. Van Swygenhoven, and P.M. Derlet: On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation. Acta Mater. 50, 3927 (2002).

    CAS  Google Scholar 

  53. J. Weissmuller: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).

    Google Scholar 

  54. R. Kirchheim: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002).

    CAS  Google Scholar 

  55. H. Conrad, J. White, W.D. Cao, X.P. Lu, and A.F. Sprecher: Effect of electric-current pulses on fatigue characteristics of polycrystalline copper. Mater. Sci. Eng., A 145, 1 (1991).

    Google Scholar 

  56. G.C. Bird and D. Saynor: The effect of peening-shot size on the performance of carbon-steel springs. J. Mech. Work. Technol. 10, 175 (1984).

    Google Scholar 

  57. Y.Z. Zhou, J.D. Guo, M. Gao, and G.H. He: Crack healing in a steel by using electropulsing technique. Mater. Lett. 58, 1732 (2004).

    CAS  Google Scholar 

  58. T. Yu, D. Deng, G. Wang, and H. Zhang: Crack healing in SUS304 stainless steel by electropulsing treatment. J. Cleaner Prod. 113, 989 (2016).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the project funded by China Postdoctoral Science Foundation (No. 2017M620770) and Shenzhen Development & Reform Commission Engineering Laboratory Project (Shenzhen development & Reform 2015-1033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-yi Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hb., Yang, Xh., Li, H. et al. Enhanced fatigue performance and surface mechanical properties of AISI 304 stainless steel induced by electropulsing-assisted ultrasonic surface rolling process. Journal of Materials Research 33, 3827–3840 (2018). https://doi.org/10.1557/jmr.2018.307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.307

Navigation