Skip to main content
Log in

Preparation of core–shell nanostructured black nano-TiO2 by sol–gel method combined with Mg reduction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Black nano-TiO2 samples with core–shell nanostructure were successfully prepared by sol–gel method combined with Mg reduction using butyl titanate as titanium source and calcining at 500°C in air atmosphere and at 400–600°C in nitrogen atmosphere. The prepared black TiO2 samples were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, photoluminescence emission spectra, N2 adsorption–desorption, and ultraviolet–visible spectroscopy. The results show that the black TiO2 exhibits a crystalline core–disordered shell structure composed of disordered surface and oxygen vacancies, and the thickness of the disordered layer is about 2–3 nm. The optical absorption properties of black nano-TiO2 samples have been remarkably enhanced in visible light region. Compared with the white TiO2, the reduced black TiO2 samples exhibit enhanced photocatalytic hydrogen production under the full solar wavelength range of light, and the sample prepared with the Mg and TiO2 ratio of 9:1 calcined at 500 °C has the maximum hydrogen production rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. X.B. Chen, S.H. Shen, L.J. Guo, and S.S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).

    Article  CAS  Google Scholar 

  3. Y.J. Yang, B. Zhang, H.Y. Wan, and G.P. Zhang: Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio. J. Mater. Res. 33, 1543 (2018).

    Article  CAS  Google Scholar 

  4. Y.C. Pan, Y.S. Shen, Q.J. Jin, and S.M. Zhu: Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J. Mater. Res. 33, 2414 (2018).

    Article  CAS  Google Scholar 

  5. N. Wada, Y. Yokomizo, C. Yogi, M. Katayama, A. Tanaka, K. Kojima, Y. Inada, and K. Ozutsumi: Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467 (2018).

    Article  CAS  Google Scholar 

  6. J.Q. Wen, X. Li, W. Liu, Y.P. Fang, J. Xie, and Y.H. Xu: Review (special issue on photocatalysis): Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    Article  CAS  Google Scholar 

  7. F.J. Wu, X. Li, W. Liu, and S.T. Zhang: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).

    Article  CAS  Google Scholar 

  8. J. Manju and S.M.J. Jawhar: Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method. J. Mater. Res. 33, 1534 (2018).

    Article  CAS  Google Scholar 

  9. Y. Zhou, Y.C. Liu, P.W. Liu, W.Y. Zhang, M.Y. Xing, and J.L. Zhang: A facile approach to further improve the substitution of nitrogen into reduced TiO2−x with an enhanced photocatalytic activity. Appl. Catal., B 170, 66 (2015).

    Article  CAS  Google Scholar 

  10. K. Zhang, X.D. Wang, T.O. He, X.L. Guo, and Y.M. Feng: Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2. Powder Technol. 253, 608 (2014).

    Article  CAS  Google Scholar 

  11. H. Zhang, J.L. Zhang, R.J. Sun, and Y.X. Zhou: Preparation of magnetic and photocatalytic cenosphere deposited with Fe3O4/SiO2/Eu-doped TiO2 core/shell nanoparticles. J. Mater. Res. 30, 3700 (2015).

    Article  CAS  Google Scholar 

  12. Z.Y. Zhao, M.C. Feng, Z.J. Peng, H.W. Huang, Z.H. Guo, and Z.H. Li: Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation. J. Mater. Res. 33, 1411 (2018).

    Article  CAS  Google Scholar 

  13. B. Liu, H.M. Chen, C. Liu, S.C. Andrews, C. Hahn, and P. Yang: Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 135, 9995 (2013).

    Article  CAS  Google Scholar 

  14. C.J. Dahlman, Y. Tan, D.J. Milliron, and A. Marcus: Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 137, 9160 (2015).

    Article  CAS  Google Scholar 

  15. M.H. Liu, Y.C. Hou, and X.F. Qu: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes. J. Mater. Res. 32, 3469 (2017).

    Article  CAS  Google Scholar 

  16. F. Li, T.H. Han, H.G. Wang, X.M. Zheng, J.M. Wan, and B.K. Ni: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).

    Article  CAS  Google Scholar 

  17. K. Zhang, X.D. Wang, X.L. Guo, T.O. He, and Y.M. Feng: Preparation of highly visible light active Fe–N co-doped mesoporous TiO2 photocatalyst by fast sol–gel method. J. Nanopart. Res. 16, 2246 (2014).

    Article  CAS  Google Scholar 

  18. K.Z. Qi, B. Cheng, J.G. Yu, and W.K. Ho: Black TiO2 (B)/anatase bicrystalline TiO2−x nanofibers with enhanced photocatalytic performance. Chin. J. Catal. 38, 1936 (2017).

    Article  CAS  Google Scholar 

  19. X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).

    Article  CAS  Google Scholar 

  20. Y. Yang, L.C. Kao, Y.Y. Liu, K. Sun, H.T. Yu, J.H. Guo, S.Y.H. Liou, and M.R. Hoffmann: Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal. 8, 4278 (2018).

    Article  CAS  Google Scholar 

  21. H. Song, C.X. Li, Z.R. Lou, Z.Z. Ye, and L.P. Zhu: Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustainable Chem. Eng. 5, 8982 (2017).

    Article  CAS  Google Scholar 

  22. J.J. Jiang, Z.P. Xing, M. Li, Z.Z. Li, X.Y. Wu, M.P. Hu, J.F. Wan, N. Wang, A.S. Besov, and W. Zhou: In situ Ti3+/N-codoped three-dimensional (3D) urchinlike black TiO2 architectures as efficient visible-light-driven photocatalysts. Ind. Eng. Chem. Res. 56, 7948 (2017).

    Article  CAS  Google Scholar 

  23. X.C. Zhang, W.Y. Hu, K.F. Zhang, J.N. Wang, B.J. Sun, H.Z. Li, P.Z. Qiao, L. Wang, and W. Zhou: Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts. ACS Sustainable Chem. Eng. 5, 6894 (2017).

    Article  CAS  Google Scholar 

  24. K. Zhang and J.H. Park: Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. J. Phys. Chem. Lett. 8, 199 (2017).

    Article  CAS  Google Scholar 

  25. X.B. Chen, C. Li, M. Gratzel, R. Kostecki, and S.S. Mao: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909 (2012).

    Article  CAS  Google Scholar 

  26. X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, and X.B. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    Article  CAS  Google Scholar 

  27. L. Li, L. Song, L.F. Zhu, Z. Yan, and X.B. Cao: Black TiO2−x with stable surface oxygen vacancies as the support of efficient gold catalysts for water–gas shift reaction. Catal. Sci. Technol. 8, 1277 (2018).

    Article  CAS  Google Scholar 

  28. X.H. Liu, B.F. Hou, G. Wang, Z.Q. Cui, X. Zhu, and X.B. Wang: Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J. Mater. Res. 33, 674 (2018).

    Article  CAS  Google Scholar 

  29. L.C. Li, K.Z. Shi, R. Tu, Q. Qian, D. Li, Z.H. Yang, and X.H. Lu: Black TiO2 (B)/anatase bicrystalline TiO2−x nanofibers with enhanced photocatalytic performance. Chin. J. Catal. 11, 1943 (2015).

    Article  CAS  Google Scholar 

  30. X.B. Chen, L. Liu, and F.Q. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).

    Article  CAS  Google Scholar 

  31. Y. Liu, D. Su, Y.Z. Zhang, L.L. Wang, G. Yang, F. Shen, S.H. Deng, X.H. Zhang, and S.R. Zhang: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757 (2017).

    Article  CAS  Google Scholar 

  32. W. Zhou, W. Li, J.Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, and D. Zhao: Order mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280 (2014).

    Article  CAS  Google Scholar 

  33. W. Zhang, C. Wang, X. Liu, and J. Li: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).

    Article  CAS  Google Scholar 

  34. G. Zhu, Y. Shan, T. Lin, W. Zhao, J. Xu, Z. Tian, H. Zhang, C. Zheng, and F. Huang: Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 8, 4705 (2016).

    Article  CAS  Google Scholar 

  35. Z. Zhao, H. Tan, H. Zhao, Y. Lv, L.J. Zhou, Y. Song, and Z. Sun: Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755 (2014).

    Article  CAS  Google Scholar 

  36. H.Q. Tan, Z. Zhao, M. Niu, and C.Y. Mao: A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6, 10216 (2014).

    Article  CAS  Google Scholar 

  37. M. Ramesh, M.P.C. Rao, S. Anandan, and H. Nagaraja: Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J. Mater. Res. 33, 601 (2018).

    Article  CAS  Google Scholar 

  38. Z. Wang, C.Y. Yang, T.Q. Lin, and H. Yin: Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007 (2013).

    Article  CAS  Google Scholar 

  39. B. Chen, J.A. Beach, D. Maurya, and R.B. Moore: Fabrication of black hierarchical TiO2 nanostructures with enhanced photocatalytic activity. RSC Adv. 4, 29443 (2014).

    Article  CAS  Google Scholar 

  40. H.L. Cui, W. Zhao, C.Y. Yang, and H. Yin: Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J. Mater. Chem. A 2, 8612 (2014).

    Article  CAS  Google Scholar 

  41. M.Q. Hu, Y. Cao, Z.Z. Li, S.L. Yang, and Z.P. Xing: Ti3+ self-doped mesoporous black TiO2/SiO2 nanocomposite as remarkable visible light photocatalyst. Appl. Surf. Sci. 426, 734 (2017).

    Article  CAS  Google Scholar 

  42. A. Barman, C.P. Saini, P.K. Sarkar, A. Roy, B. Satpati, D. Kanjilal, S.K. Ghosh, S. Dhar, and A. Kanjilal: Probing electron density across Ar+ irradiation-induced self-organized TiO2−x nanochannels for memory application. Appl. Phys. Lett. 108, 244104 (2016).

    Article  CAS  Google Scholar 

  43. Y. Liu, L.H. Tian, X.Y. Tan, X. Li, and X.B. Chen: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).

    Article  CAS  Google Scholar 

  44. T. Xia and X.B. Chen: Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 1, 2983 (2013).

    Article  CAS  Google Scholar 

  45. K.X. Li, J.L. Xu, X.D. Yan, L. Liu, X.B. Chen, Y.S. Luo, J. He, and D.Z. Shen: The origin of the strong microwave absorption in black TiO2. Appl. Phys. Lett. 108, 183102 (2016).

    Article  CAS  Google Scholar 

  46. A. Sinhamahapatra, J.P. Jeon, and J.S. Yu: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539 (2015).

    Article  CAS  Google Scholar 

  47. C.A.V. Kumar, J.S. Rajadurai, and S. Sundararajan: Performance enrichment on tribological characteristics of powder metallurgy processed aluminium particulate composites by inclusion of rutile (TiO2). J. Mater. Res. 31, 2445 (2016).

    Article  CAS  Google Scholar 

  48. T. Xia, N. Li, Y.L. Zhang, M.B. Kruger, J. Murowchick, A. Selloni, and X.B. Chen: Directional heat dissipation across the interface in Anatase–Rutile nanocomposites. ACS Appl. Mater. Interfaces 5, 9883 (2013).

    Article  CAS  Google Scholar 

  49. X.D. Wang, R. Fu, Q.Q. Yin, H. Wu, X.L. Guo, R.H. Xu, and Q.Y. Zhong: Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity. J. Nanopart. Res. 20, 89 (2018).

    Article  CAS  Google Scholar 

  50. M.A. Green, J.L. Xu, H.L. Liu, J.Y. Zhao, K.X. Li, L. Liu, H. Qin, Y.M. Zhu, D.Z. Shen, and X.B. Chen: Terahertz absorption of hydrogenated TiO2 nanoparticles. Mater. Today Phys. 4, 64 (2018).

    Article  Google Scholar 

  51. T. Xia, C. Zhang, N.A. Oyler, and X.B. Chen: Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 6905 (2013).

    Article  CAS  Google Scholar 

  52. A. Riaz, H.J.Y. Qi, Y. Fang, J.F. Xu, C.M. Zhou, Z.G. Jin, Z.L. Hong, M.J. Zhi, and Y. Liu: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).

    Article  CAS  Google Scholar 

  53. Y. Yan, T.R. Chen, Y.C. Zou, and Y. Wang: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Science and Technology Guidance Project of China National Textile and Apparel Council (No. 2016040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangdong Wang or Xiaoling Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Fu, R., Wang, X. et al. Preparation of core–shell nanostructured black nano-TiO2 by sol–gel method combined with Mg reduction. Journal of Materials Research 33, 4173–4181 (2018). https://doi.org/10.1557/jmr.2018.411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.411

Navigation