Skip to main content
Log in

Phase evolution of refractory high-entropy alloy CrMoNbTiW during mechanical alloying and spark plasma sintering

  • Article
  • Nanocrystalline High Entropy Materials: Processing Challenges and Properties
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present study, the phase evolution and microstructure of CrMoNbTiW, a new equi-atomic refractory high-entropy alloy, are studied. The alloy was synthesized through mechanical alloying (MA) followed by consolidation using spark plasma sintering. After MA, a major BCC solid solution along with residual Cr and Nb were observed. However, secondary phases such as Laves and carbides were also observed in addition to the major BCC solid solution after sintering. Unsolicited contamination from the milling media is found to be one of the reasons for the formation of secondary phases. The high hardness of 8.9 GPa after sintering was attributed to the presence of secondary phases along with the nanocrystalline nature of the alloy. To understand the phase evolution, calculation of phase diagram was carried out using CALPHAD. Further, binary phase diagram inspection and simple empirical parameters were also used to assess their effectiveness in predicting phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  CAS  Google Scholar 

  3. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie: Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 1, 37 (2018).

    Google Scholar 

  4. E. Eshed, N. Larianovsky, A. Kovalevsky, V. Popov, I. Gorbachev, V. Popov, and A. Katz-Demyanetz: Microstructural evolution and phase formation in 2nd-generation refractory-based high entropy alloys. Materials 11, 2 (2018).

    Article  CAS  Google Scholar 

  5. R.I. Jaffee, W.J. Harris, and N.E. Promisel: Development of refractory metal sheet in the United States. J. Less-Common Met. 2, 95 (1960).

    Article  Google Scholar 

  6. S.A. Hewitt and K.A. Kibble: Effects of ball milling time on the synthesis and consolidation of nanostructured WC—Co composites. Int. J. Refract. Met. Hard Mater. 27, 937 (2009).

    Article  CAS  Google Scholar 

  7. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  8. B.S. Murty and S. Ranganathan: Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43, 101 (1998).

    Article  CAS  Google Scholar 

  9. Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L. Magness, and K. Cho: Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Mater. 54, 4079 (2006).

    Article  CAS  Google Scholar 

  10. A.K. Srivastav: Effect of alloying on microstructural stability and densification during sintering of nanocrystalline tungsten. Ph.D. thesis, Indian Institute of Technology Madras, Chennai, 2014.

  11. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 33 (2010).

    Article  CAS  Google Scholar 

  12. S. Praveen, J. Basu, S. Kashyap, and R. Sankar: Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd. 662, 361 (2016).

    Article  CAS  Google Scholar 

  13. M. Vaidya, A. Karati, A. Marshal, K.G. Pradeep, and B.S. Murty: Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 770, 1004 (2019).

    Article  CAS  Google Scholar 

  14. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng., A 712, 616 (2018).

    Article  CAS  Google Scholar 

  15. O.A. Waseem and H.J. Ryu: Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications. Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  16. C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh: Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76 (2015).

    Article  CAS  Google Scholar 

  17. T. Chookajorn: Enhancing stability of powder-route nanocrystalline tungsten-titanium via alloy thermodynamics. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 2013.

  18. R.A. Young and D.B. Wiles: Profile shape functions in Rietveld refinements. J. Appl. Crystallogr. 15, 430 (1982).

    Article  CAS  Google Scholar 

  19. E. Prince and J.K. Stalick: Accuracy in Powder Diffraction II (NIST, Spec. Publ. No. 846, US Dept of Commerce, Gaithersburg, 1992).

    Book  Google Scholar 

  20. N. Saunders and A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide Pergamon, Oxford; New York (1998).

    Google Scholar 

  21. B. Sundman, B. Jansson, and J.O. Andersson: The Thermo-Calc databank system. Calphad 9, 153 (1985).

    Article  CAS  Google Scholar 

  22. S.K. Pabi, J. Joardar, and B.S. Murty: Mechanism and Kinetics of alloying and nanostructure formation by mechanical methods. PINSA 1, 1 (2001).

    Google Scholar 

  23. J. Joardar, S.K. Pabi, and B.S. Murty: Milling criteria for the synthesis of nanocrystalline NiAl by mechanical alloying. J. Alloys Compd. 429, 204 (2007).

    Article  CAS  Google Scholar 

  24. J.B. Nelson and D.P. Riley: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160 (1945).

    Article  CAS  Google Scholar 

  25. A.K. Srivastav, A.M. Panindre, and B.S. Murty: XRD characterization of microstructural evolution during mechanical alloying of W–20 wt% Mo. Trans. Indian Inst. Met. 66, 409 (2013).

    Article  CAS  Google Scholar 

  26. N. Burgio, A. Iasonna, M. Magini, S. Martelli, and F. Padella: Mechanical alloying of the Fe—Zr system. Correlation between input energy and end products. Nuovo Cim. D 13, 459 (1991).

    Article  Google Scholar 

  27. Y. Zhang, H. Liu, and Z. Jin: Thermodynamic assessment of the Mo—Nb—Ta system. Calphad 21, 6 (2000).

    Google Scholar 

  28. C.P. Wang, J. Wang, S.H. Guo, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: Intermetallics experimental investigation and thermodynamic calculation of the phase equilibria in the Co—Mo—W system. Intermetallics 17, 1 (2009).

    Article  CAS  Google Scholar 

  29. S.V.N. Naidu, A.M. Sriramamurthy, and P. Rama Rao: Binary Alloy Phase Diagrams, Second Edition, Ed. T.B. Massalski, ASM International, Materials Park, Ohio, 2 (1990).

  30. S. Jonsson: Reevaluation of the Ti—W system and prediction of the Ti—W–N phase diagram. Z. Metallkd 87, 784 (1996).

    CAS  Google Scholar 

  31. D.M. Cupid, M.J. Kriegel, O. Fabrichnaya, F. Ebrahimi, and H.J. Seifert: Thermodynamic assessment of the Cr—Ti and first assessment of the Al—Cr—Ti systems. Intermetallics 19, 1222 (2011).

    Article  CAS  Google Scholar 

  32. P.E.A. Turchi, L. Kaufman, and Z.K. Liu: Modeling of Ni—Cr—Mo based alloys: Part I-phase stability. Calphad 30, 70 (2006).

    Article  CAS  Google Scholar 

  33. J.G. Costa Neto, S.G. Fries, H.L. Lukas, S. Gama, and G. Effenberg: Thermodynamic optimisation of the Nb—Cr system. Calphad 17, 219 (1993).

    Article  CAS  Google Scholar 

  34. A. Takeuchi and A. Inoue: Mixing enthalpy of liquid phase calculated by Miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics 18, 1779 (2010).

    Article  CAS  Google Scholar 

  35. S. Diliberto, O. Kessler, C. Rapin, P. Steinmetz, and P. Berthod: Development of chromia forming Mo—W–Cr alloys: Synthesis and characterization. J. Mater. Sci. 37, 3277 (2002).

    Article  CAS  Google Scholar 

  36. Z.C. Cordero and C.A. Schuh: Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 82, 123 (2015).

    Article  CAS  Google Scholar 

  37. A.Y. Badmos and H.K.D.H. Bhadeshia: The evolution of solutions: A thermodynamic analysis of mechanical alloying. Metall. Mater. Trans. A 28, 2189 (1997).

    Article  Google Scholar 

  38. C.C. Koch: Materials synthesis by mechanical alloying. Annu. Rev. Mater. Sci. 19, 121 (1989).

    Article  CAS  Google Scholar 

  39. H.O. Pierson: Handbook of refractory carbides and nitrides: Properties, characteristics, processing, and applications, Noyes Publications, Westwood, New Jersey, U.S.A, Vol. 362 (1996).

  40. Y. Choi and S.W. Rhee: Equilibrium in the reaction of Ti and C to form substoichiometric TiCx. J. Mater. Sci. Lett. 13, 323 (1994).

    Article  CAS  Google Scholar 

  41. S.R. Shatynski: The thermochemistry of transition metal carbides. Oxid. Met. 13, 105 (1979).

    Article  CAS  Google Scholar 

  42. S.V. Meschel and O.J. Kleppa: Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry. J. Alloys Compd. 257, 227 (1997).

    Article  CAS  Google Scholar 

  43. K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S.R. Bakshi: Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J. Alloys Compd. 709, 829 (2017).

    Article  CAS  Google Scholar 

  44. S. Praveen, A. Anupam, R. Tilak, and R.S. Kottada: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).

    Article  CAS  Google Scholar 

  45. P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, and R.S. Kottada: Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater. Des. 134, 426 (2017).

    Article  CAS  Google Scholar 

  46. R. Sriharitha, B.S. Murty, and R.S. Kottada: Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. 583, 2013 (2014).

  47. B. Zhang, M.C. Gao, Y. Zhang, S. Yang, and S.M. Guo: Senary refractory high entropy alloy MoNbTaTiVW. Mater. Sci. Technol. 31, 1207 (2015).

    Article  CAS  Google Scholar 

  48. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).

    Article  CAS  Google Scholar 

  49. N. Yurchenko, N. Stepanov, and G. Salishchev: Laves-phase formation criterion for high-entropy alloys. Mater. Sci. Technol. 33, 17 (2016).

    Article  CAS  Google Scholar 

  50. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  CAS  Google Scholar 

  51. M.G. Poletti and L. Battezzati: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank ISRO-IITM cell for the financial support through the project ICSR/ISRO-IITM/MET/13-14/150/BSMT. The authors are grateful to Ms. Dilpreet Danjal (former B.Tech student, NIT Rourkela), Mr. Adil Shaik (MS scholar, IIT Madras), Mr. G. Karthick, Mr. N.T.B.N. Koundinya, Dr. Soumya Sridar (Ph.D. students, Department of Metallurgical and Materials Engineering at IIT Madras) and Dr. Niraj Chawake (former Ph.D. student, Department of Metallurgical and Materials Engineering at IIT Madras) for their valuable suggestions and discussion. The authors thank NFAPT team for their assistance in the EBSD analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lavanya Raman, Ravi Sankar Kottada or B. S. Murty.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, L., Guruvidyathri, K., Kumari, G. et al. Phase evolution of refractory high-entropy alloy CrMoNbTiW during mechanical alloying and spark plasma sintering. Journal of Materials Research 34, 756–766 (2019). https://doi.org/10.1557/jmr.2018.483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.483

Navigation