Skip to main content
Log in

Scale-dependent pop-ins in nanoindentation and scale-free plastic fluctuations in microcompression

  • Nanomechanics and Testing
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation and microcrystal deformation are two methods that allow probing size effects in crystal plasticity. In many cases of microcrystal deformation, scale-free and potentially universal intermittency of event sizes during plastic flow has been revealed, whereas nanoindentation has been mainly used to assess the stress statistics of the first pop-in. Here, we show that both methods of deformation exhibit fundamentally different event-size statistics obtained from plastic instabilities. Nanoindentation results in scale-dependent intermittent microplasticity best described by Weibull statistics (stress and magnitude of the first pop-in) and lognormal statistics (magnitude of higher-order pop-ins). In contrast, finite-volume microcrystal deformation of the same material exhibits microplastic event-size intermittency of truncated power-law type even when the same plastic volume as in nanoindentation is probed. Furthermore, we successfully test a previously proposed extreme-value statistics model that relates the average first critical stress to the shape and scale parameter of the underlying Weibull distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. R. Maass and P.M. Derlet: Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Mater. 143, 338 (2018).

    Article  CAS  Google Scholar 

  2. A. Vandenbeukel: Theory of effect of dynamic strain aging on mechanical properties. Phys. Status Solidi A 30, 197 (1975).

    Article  CAS  Google Scholar 

  3. R.A. Mulford and U.F. Kocks: New observations on the mechanisms of dynamic strain-aging and of jerky flow. Acta Metall. 27, 1125 (1979).

    Article  CAS  Google Scholar 

  4. H.Y. Yasuda, K. Shigeno, and T. Nagase: Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals. Scr. Mater. 108, 80 (2015).

    Article  CAS  Google Scholar 

  5. R. Maass and J.F. Löffler: Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 25, 2353 (2015).

    Article  CAS  Google Scholar 

  6. E. Schmid and M.A. Valouch: About the sudden translation of zinc crystals. Z. Phys. 75, 531 (1932).

    Article  CAS  Google Scholar 

  7. R. Becker and E. Orowan: Sudden expansion of zinc crystals. Z. Phys. 79, 566 (1932).

    Article  CAS  Google Scholar 

  8. R.F. Tinder and J.P. Trzil: Millimicroplastic burst phenomena in zinc monocrystals. Acta Metall. 21, 975 (1973).

    Article  CAS  Google Scholar 

  9. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single-crystals in compression. Annu. Rev. Mater. Sci. 39, 361 (2009).

    Article  CAS  Google Scholar 

  10. G. Sparks, Y. Cui, G. Po, Q. Rizzardi, J. Marian, and R. Maass: Avalanche statistics and the intermittent-to-smooth transition in microplasticity. Phys. Rev. Mater. 3, 080601 (2019).

    Article  CAS  Google Scholar 

  11. E.T. Lilleodden and W.D. Nix: Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater. 54, 1583 (2006).

    Article  CAS  Google Scholar 

  12. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).

    Article  CAS  Google Scholar 

  13. O.L. Warren, S.A. Downs, and T.J. Wyrobek: Challenges and interesting observations associated with feedback-controlled nanoindentation. Z. Metallkd. 95, 287 (2004).

    Article  CAS  Google Scholar 

  14. S. Shim, H. Bei, E.P. George, and G.M. Pharr: A different type of indentation size effect. Scr. Mater. 59, 1095 (2008).

    Article  CAS  Google Scholar 

  15. J.C. Crone, L.B. Munday, J.J. Ramsey, and J. Knap: Modeling the effect of dislocation density on the strength statistics in nanoindentation. Modell. Simul. Mater. Sci. Eng. 26, 015009 (2017).

    Article  Google Scholar 

  16. A. Barnoush, M.T. Welsch, and H. Vehoff: Correlation between dislocation density and pop-in phenomena in aluminum studied by nanoindentation and electron channeling contrast imaging. Scr. Mater. 63, 465 (2010).

    Article  CAS  Google Scholar 

  17. L. Zhang and T. Ohmura: Plasticity initiation and evolution during nanoindentation of an iron–3% silicon crystal. Phys. Rev. Lett. 112 (2014).

  18. P. Sudharshan Phani, K.E. Johanns, E.P. George, and G.M. Pharr: A stochastic model for the size dependence of spherical indentation pop-in. J. Mater. Res. 28, 2728 (2013).

    Article  CAS  Google Scholar 

  19. C.A. Schuh, J.K. Mason, and A.C. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    Article  CAS  Google Scholar 

  20. C.A. Schuh and A.C. Lund: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152 (2004).

    Article  CAS  Google Scholar 

  21. Y.L. Chiu and A.H.W. Ngan: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).

    Article  CAS  Google Scholar 

  22. J.R. Morris, H. Bei, G.M. Pharr, and E.P. George: Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106, 165502 (2011).

    Article  CAS  Google Scholar 

  23. D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic: Scale-free intermittent flow in crystal plasticity. Science 312, 1188 (2006).

    Article  CAS  Google Scholar 

  24. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi: Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318, 251 (2007).

    Article  CAS  Google Scholar 

  25. M. Zaiser, J. Schwerdtfeger, A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, and E. Arzt: Strain bursts in plastically deforming molybdenum micro- and nanopillars. Philos. Mag. 88, 3861 (2008).

    Article  CAS  Google Scholar 

  26. R. Maass, P.M. Derlet, and J.R. Greer: Independence of slip velocities on applied stress in small crystals. Small 11, 341 (2015).

    Article  CAS  Google Scholar 

  27. N. Friedman, A.T. Jennings, G. Tsekenis, J-Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, and K.A. Dahmen: Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model. Phys. Rev. Lett. 109, 095507 (2012).

    Article  CAS  Google Scholar 

  28. M. LeBlanc, L. Angheluta, K. Dahmen, and N. Goldenfeld: Universal fluctuations and extreme statistics of avalanches near the depinning transition. Phys. Rev. E 87, 022126 (2013).

    Article  CAS  Google Scholar 

  29. J.P. Sethna, M.K. Bierbaum, K.A. Dahmen, C.P. Goodrich, J.R. Greer, L.X. Hayden, J.P. Kent-Dobias, E.D. Lee, D.B. Liarte, X. Ni, K.N. Quinn, A. Raju, D.Z. Rocklin, A. Shekhawat, and S. Zapperi: Deformation of crystals: Connections with statistical physics. Annu. Rev. Mater. Res. 47, 217 (2017).

    Article  CAS  Google Scholar 

  30. J.T. Uhl, S. Pathak, D. Schorlemmer, X. Liu, R. Swindeman, B.A.W. Brinkman, M. LeBlanc, G. Tsekenis, N. Friedman, R. Behringer, D. Denisov, P. Schall, X. Gu, W.J. Wright, T. Hufnagel, A. Jennings, J.R. Greer, P.K. Liaw, T. Becker, G. Dresen, and K.A. Dahmen: Universal quake statistics: From compressed nanocrystals to earthquakes. Sci. Rep. 5, 16493 (2015).

    Article  CAS  Google Scholar 

  31. G. Sparks and R. Maass: Shapes and velocity relaxation of dislocation avalanches in Au and Nb microcrystals. Acta Mater. 152, 86 (2018).

    Article  CAS  Google Scholar 

  32. G. Sparks and R. Maass: Nontrivial scaling exponents of dislocation avalanches in microplasticity. Phys. Rev. Mater. 2, 120601 (2018).

    Article  CAS  Google Scholar 

  33. G. Sparks and R. Maass: Effects of orientation and pre-deformation on velocity profiles of dislocation avalanches in gold microcrystals. Eur. Phys. J. B 92, 15 (2019).

    Article  CAS  Google Scholar 

  34. T. Niiyama and T. Shimokawa: Atomistic mechanisms of intermittent plasticity in metals: Dislocation avalanches and defect cluster pinning. Phys. Rev. E 91, 022401 (2015).

    Article  CAS  Google Scholar 

  35. L.M. Brown: Power laws in dislocation plasticity. Philos. Mag. 96, 2696 (2016).

    Article  CAS  Google Scholar 

  36. P.M. Derlet and R. Maass: The stress statistics of the first pop-in or discrete plastic event in crystal plasticity. J. Appl. Phys. 120, 225101 (2016).

    Article  CAS  Google Scholar 

  37. R. Maass, M. Wraith, J.T. Uhl, J.R. Greer, and K.A. Dahmen: Slip statistics of dislocation avalanches under different loading modes. Phys. Rev. E 91, 042403 (2015).

    Article  CAS  Google Scholar 

  38. J. Alstott, E. Bullmore, and D. Plenz: Powerlaw: A Python package for analysis of heavy-tailed distributions. PLoS One 9, e85777 (2014).

    Article  CAS  Google Scholar 

  39. A. Clauset, C.R. Shalizi, and M.E.J. Newman: Power-law distributions in empirical data. SIAM Rev. 51, 661 (2009).

    Article  Google Scholar 

  40. R. Maass, C.A. Volkert, and P.M. Derlet: Crystal size effect in two dimensions—Influence of size and shape. Scr. Mater. 102, 27 (2015).

    Article  CAS  Google Scholar 

  41. P.D. Ispanovity, A. Hegyi, I. Groma, G. Gyoergyi, K. Ratter, and D. Weygand: Average yielding and weakest link statistics in micron-scale plasticity. Acta Mater. 61, 6234 (2013).

    Article  CAS  Google Scholar 

  42. P.D. Ispánovity, D. Tüzes, P. Szabó, M. Zaiser, and I. Groma: Role of weakest links and system-size scaling in multiscale modeling of stochastic plasticity. Phys. Rev. B 95, 054108 (2017).

    Article  Google Scholar 

  43. Y. Xia, Y. Gao, G.M. Pharr, and H. Bei: Single versus successive pop-in modes in nanoindentation tests of single crystals. J. Mater. Res. 31, 2065 (2016).

    Article  CAS  Google Scholar 

  44. S. Papanikolaou, Y. Cui, N. Ghoniem: Avalanches and plastic flow in crystal plasticity: An overview. Modell. Simul. Mater. Sci. Eng. 26, 013001 (2018).

    Article  Google Scholar 

  45. M. LeBlanc, A. Nawano, W.J. Wright, X. Gu, J.T. Uhl, and K.A. Dahmen: Avalanche statistics from data with low time resolution. Phys. Rev. E 94, 052135 (2016).

    Article  Google Scholar 

  46. D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic, and M.J. Mills: Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988 (2008).

    Article  CAS  Google Scholar 

  47. R. Maass and M.D. Uchic: In situ characterization of the dislocation-structure evolution in Ni micro-pillars. Acta Mater. 60, 1027 (2012).

    Article  CAS  Google Scholar 

  48. S.H. Oh, M. Legros, D. Kiener, and G. Dehm: In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mater. 8, 95 (2009).

    Article  CAS  Google Scholar 

  49. N. Zaafarani, D. Raabe, F. Roters, and S. Zaefferer: On the origin of deformation-induced rotation patterns below nanoindents. Acta Mater. 56, 31 (2008).

    Article  CAS  Google Scholar 

  50. F.I. Metz: Electropolishing of metals. Retrospective theses and dissertations, Iowa State University, Paper 2622, 1960.

Download references

Acknowledgments

This research was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. R.M. is grateful for financial support by the NSF CAREER program (grant NSF DMR 1654065), and for start-up funds provided by the Department of Materials Science and Engineering at UIUC. The authors also thank J. Spears for conducting AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Maaß.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimanek, J., Rizzardi, Q., Sparks, G. et al. Scale-dependent pop-ins in nanoindentation and scale-free plastic fluctuations in microcompression. Journal of Materials Research 35, 196–205 (2020). https://doi.org/10.1557/jmr.2019.386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.386

Navigation