Skip to main content
Log in

Guidelines in predicting phase formation of high-entropy alloys

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

With multiple elements mixed at equal or near-equal molar ratios, the emerging, high-entropy alloys (HEAs), also named multi-principal elements alloys (MEAs), have posed tremendous challenges to materials scientists and physicists, e.g., how to predict high-entropy phase formation and design alloys. In this paper, we propose some guidelines in predicting phase formation, using thermodynamic and topological parameters of the constituent elements. This guideline together with the existing ones will pave the way toward the composition design of MEAs and HEAs, as well as property optimization based on the composition–structure–property relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  2. J-W. Yeh, S-K. Chen, S-J. Lin, J-Y. Gan, T-S. Chin, T-T. Shun, C-H. Tsau, and S-Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  3. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213 (2004).

    Article  Google Scholar 

  4. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen: Novel microstructure and properties of multicoponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).

    Article  CAS  Google Scholar 

  5. Y. Zhang, X. Yang, and P.K. Liaw: Alloy design and properties optimization of high-entropy alloys. J. Miner. Met. Mater. Soc. 64, 830 (2012).

    Article  CAS  Google Scholar 

  6. F. Otto, Y. Yang, H. Bei, and E.P. George: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).

    Article  CAS  Google Scholar 

  7. C. Zhu, Z.P. Lu, and T.G. Nieh: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).

    Article  CAS  Google Scholar 

  8. W. Guo, W. Dmowski, J-Y. Noh, P. Rack, P.K. Liaw, and T. Egami: Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study. Metall. Mater. Trans. A 44, 1994 (2013).

    Article  CAS  Google Scholar 

  9. J.M. Dubois: Complex metallic alloys: clarity through complexity. Nat. Mater. 9, 287 (2010).

    Article  CAS  Google Scholar 

  10. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464 (2003).

    Article  CAS  Google Scholar 

  11. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).

    Article  CAS  Google Scholar 

  12. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov: Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng. A 533, 107 (2012).

    Article  CAS  Google Scholar 

  13. M-H. Chuang, M-H. Tsai, W-R. Wang, S-J. Lin, and J-W. Yeh: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).

    Article  CAS  Google Scholar 

  14. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).

    Article  Google Scholar 

  15. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).

    Article  CAS  Google Scholar 

  16. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  17. S. Ranganathan: Alloyed pleasures: multimetallic cocktails. Curr. Sci. 85, 1404 (2003).

    Google Scholar 

  18. A.L. Greer: Materials science-confusion by design. Nature 366, 303 (1993).

    Article  Google Scholar 

  19. W. Hume-Rothery: Phase Stability in Metals and Alloys (McGraw-Hill, New York, 1967).

    Google Scholar 

  20. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).

    Article  CAS  Google Scholar 

  21. B. Fultz: Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247 (2010).

    Article  CAS  Google Scholar 

  22. O. Delaire, T. Swan-Wood, and B. Fultz: Negative entropy of mixing for vanadium-platinum solutions. Phys. Rev. Lett. 93, 185704 (2004).

    Article  CAS  Google Scholar 

  23. L.M. Martyushev and V.D. Seleznev: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1 (2006).

    Article  CAS  Google Scholar 

  24. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).

    Article  CAS  Google Scholar 

  25. A. Cunliffe, J. Plummer, I. Figueroa, and I. Todd: Glass formation in a high entropy alloy system by design. Intermetallics 23, 204 (2012).

    Article  CAS  Google Scholar 

  26. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  27. F.J. Wang, Y. Zhang, and G.L. Chen: Atomic packing efficiency and phase transition in a high entropy alloy. J. Alloys Compd. 478, 321 (2009).

    Article  CAS  Google Scholar 

  28. Y. Zhang, Y.J. Zhou, X.D. Hui, M.L. Wang, and G.L. Chen: Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci. China Ser. G–Phys. Mech. Astron. 51, 427 (2008).

    CAS  Google Scholar 

  29. T. Egami and Y. Waseda: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).

    Article  CAS  Google Scholar 

  30. S.G. Ma, S.F. Zhang, M.C. Gao, P.K. Liaw, and Y. Zhang: A successful synthesis of the CoCrFeNiA10.3 single-crystal, high-entropy alloy by Bridgman solidification. J. Miner. Met. Mater. Soc., 65, 1751 (2013).

    Article  CAS  Google Scholar 

  31. Z. Tang, M.C. Gao, H.Y. Diao, T.F. Yang, J.P. Liu, T.T. Zuo, Y. Zhang, Z. P. Lu, Y.Q. Cheng, Y.W. Zhang, K.A. Dahmen, P.K. Liaw, and T. Egami: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. J. Miner. Met. Mater. Soc., 65, 1848 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (NNSFC, No. 50971019, 51010001, and 51001009), 111 Project (B07003), and Program for Changjiang Scholars and Innovative Research Team in University. PKL very much appreciates the financial support from the US National Science Foundation (DMR-0909037, CMMI-0900271, and CMMI-1100080), the Department of Energy (DOE), Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP) 00119262, and the DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855 and DE-FE-0011194) with C. Huber, C. V. Cooper, D. Finotello, A. Ardell, E. Taleff, V. Cedro, R. O. Jensen,L. Tan, andS. Lesicaascontractmonitors. YQC is supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. MCG acknowledges the support of the Innovative Processing and Technologies Program of the National Energy Technology Laboratory’ s (NETL) Strategic Center for Coal under the RES contract DE-FE-0004000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit {rs|http:// dx.doi.org/10.1557/mrc.2014.11|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, Z.P., Ma, S.G. et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Communications 4, 57–62 (2014). https://doi.org/10.1557/mrc.2014.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.11

Navigation