Skip to main content
Log in

Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The emergence of methyl-ammonium lead halide (MAPbX3) perovskites motivates the identification of unique properties giving rise to exceptional bulk transport properties, and identifying future materials with similar properties. Here, we propose that this “defect tolerance” emerges from fundamental electronic-structure properties, including the orbital character of the conduction and valence band extrema, the chargecarrier effective masses, and the static dielectric constant. We use MaterialsProject.org searches and detailed electronic-structure calculations to demonstrate these properties in other materials than MAPbX3. This framework of materials discovery may be applied more broadly, to accelerate discovery of new semiconductors based on emerging understanding of recent successes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.

Similar content being viewed by others

References

  1. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). doi:10.1063/1.1736034.

    CAS  Google Scholar 

  2. M.B. Prince: Silicon solar energy converters. J. Appl. Phys. 26, 534–540 (1955). doi:10.1063/1.1722034.

    Google Scholar 

  3. L. Yu and A. Zunger: Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012). doi:10.1103/PhysRevLett.108.068701.

    Google Scholar 

  4. L. Yu, R.S. Kokenyesi, D.A. Keszler, and A. Zunger: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43–48 (2013). doi:10.1002/aenm.201200538.

    CAS  Google Scholar 

  5. C. Wadia, A.P. Alivisatos, and D.M. Kammen: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072–2077 (2009). doi:10.1021/es8019534.

    CAS  Google Scholar 

  6. D.M. Powell, M.T. Winkler, H.J. Choi, C.B. Simmons, D.B. Needleman, and T. Buonassisi: Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874–5883 (2012). doi:10.1039/ C2EE03489A.

    Google Scholar 

  7. T. Surek: Crystal growth and materials research in photovoltaics: progress and challenges. J. Cryst. Growth 275, 292–304 (2005). doi:10.1016/j.jcrysgro.2004.10.093.

    CAS  Google Scholar 

  8. I.L. Repins, H. Moutinho, S.G. Choi, A. Kanevce, D. Kuciauskas, P. Dippo, C.L. Beall, J. Carapella, C. DeHart, B. Huang, and S.H. Wei: Indications of short minority-carrier lifetime in kesterite solar cells. J. Appl. Phys. 114, 084507 (2013). doi:10.1063/1.4819849.

    Google Scholar 

  9. N.M. Mangan, R.E. Brandt, V. Steinmann, R. Jaramillo, J.V. Li, J.R. Poindexter, K. Hartman, L. Sun, R.G. Gordon, and T. Buonassisi: A path to 10% efficiency for tin sulfide devices. In 2014 IEEE 40th Photovoltaic Specialists Conf. PVSC, 2014; 2373–2378. doi:10.1109/ PVSC.2014.6925404.

    Google Scholar 

  10. T. Unold and H.W. Schock: Nonconventional (non-silicon-based) photovoltaic materials. Annu. Rev. Mater. Res. 41, 297–321 (2011). doi:10.1146/annurev-matsci-062910-100437.

    CAS  Google Scholar 

  11. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M. J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). doi:10.1126/science.1243982.

    CAS  Google Scholar 

  12. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang: Electron–hole diffusion lengths >175 μm in solution grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). doi:10.1126/science. aaa5760.

    CAS  Google Scholar 

  13. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). doi:10.1038/nature14133.

    CAS  Google Scholar 

  14. National Renewable Energy Laboratory. Best research-cell efficiencies. Best Research Cell Efficiency (accessed March 20, 2015). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

    Google Scholar 

  15. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). doi:10.1021/ja809598r.

    CAS  Google Scholar 

  16. M.A. Green, A. Ho-Baillie, and H.J. Snaith: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014). doi:10.1038/nphoton.2014.134.

    CAS  Google Scholar 

  17. C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). doi:10.1021/ic401215x.

    CAS  Google Scholar 

  18. J. Mattheis, J. Werner, and U. Rau: Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. Phys. Rev. B 77, 085203 (2008). doi:10.1103/PhysRevB.77.085203.

    Google Scholar 

  19. J.R. Davis, Jr., A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick, and H.C. Mollenkopf: Impurities in silicon solar cells. IEEE Trans. Electron Devices 27, 677–687 (1980). doi:10.1109/T-ED.1980.19922.

    Google Scholar 

  20. H.R. Moutinho, R.G. Dhere, M.M. Al-Jassim, C. Ballif, D.H. Levi, A.B. Swartzlander, M.R. Young, and L.L. Kazmerski: Study of CdTe/CdS solar cells using CSS CdTe deposited at low temperature. In 2000 IEEE 28th Photovoltaic Specialists Conf. PVSC, 2000; 646–649.

    Google Scholar 

  21. L. Kranz, C. Gretener, J. Perrenoud, D. Jaeger, S.S.A. Gerstl, R. Schmitt, S. Buecheler, and A.N. Tiwari: Tailoring impurity distribution in polycrystalline CdTe solar cells for enhanced minority carrier lifetime. Adv. Energy Mater. 4, 1301400 (2014). doi:10.1002/aenm.201301400.

    Google Scholar 

  22. I.L. Repins, W.K. Metzger, C.L. Perkins, J.V. Li, and M.A. Contreras: Measured minority-carrier lifetime and CIGS device performance. In 2009 IEEE 34th Photovoltaic Specilists Conf. PVSC, 2009; 000978–000983. doi:10.1109/PVSC.2009.5411126.

    Google Scholar 

  23. O.D. Miller, E. Yablonovitch, and S.R. Kurtz: Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012). doi:10.1109/JPHOTOV. 2012.2198434.

    Google Scholar 

  24. E.A. Schiff: Hole mobilities and the physics of amorphous silicon solar cells. J. Non-Cryst. Solids 352, 1087–1092 (2006). doi:10.1016/j. jnoncrysol.2005.11.074.

    CAS  Google Scholar 

  25. W.K. Metzger, D. Albin, D. Levi, P. Sheldon, X. Li, B.M. Keyes, and R.K. Ahrenkiel: Time-resolved photoluminescence studies of CdTe solar cells. J. Appl. Phys. 94, 3549–3555 (2003). doi:10.1063/1.1597974.

    CAS  Google Scholar 

  26. D. Walter, F. Rosenits, F. Kopp, S. Reber, B. Berger, and W. Warta: Determining the minority carrier lifetime in epitaxial silicon layers by micro-wave-detected photoconductivity measurements. In 25th Eur. Photovoltaic Solar Energy Conf., Valencia, Spain, 2010; 2078–2083. doi:10.4229/25thEUPVSEC2010-2CV.3.1.

    Google Scholar 

  27. T. Tiedje, C.R. Wronski, B. Abeles, and J.M. Cebulka: Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance. Sol. Cells 2, 301–318 (1980). doi:10.1016/0379-6787(80)90034-4.

    CAS  Google Scholar 

  28. R.A. Sinton, A. Cuevas, and M. Stuckings: Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. In IEEE 25th Photovoltaic Specialists Conf., Washington, D.C., 1996; 457–460.

    Google Scholar 

  29. J.K. Katahara and H.W. Hillhouse: Quasi-Fermi level splitting and subbandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014). doi:10.1063/1.4898346.

    Google Scholar 

  30. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: Commentary: the Materials Project: a materials genome approach to acceleratingmaterials innovation. APL Mater. 1, 011002 (2013). doi:10.1063/1.4812323.

    Google Scholar 

  31. W.-J. Yin, T. Shi, and Y. Yan: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). doi:10.1063/1.4864778.

    Google Scholar 

  32. W.-J. Yin, T. Shi, and Y. Yan: Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014). doi:10.1002/adma.201306281.

    CAS  Google Scholar 

  33. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu: Near-band-edge optical responses of solution-processed organicinorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes. Appl. Phys. Express 7, 032302 (2014). doi:10.7567/APEX.7.032302.

    Google Scholar 

  34. A. Walsh: Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C 119, 5755–5760 (2015). doi:10.1021/jp512420b.

    CAS  Google Scholar 

  35. M.H. Du: Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014). doi:10.1039/ C4TA01198H.

    CAS  Google Scholar 

  36. S.B. Zhang, S.-H. Wei, A. Zunger, and H. Katayama-Yoshida: Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642 (1998).

    CAS  Google Scholar 

  37. A. Zakutayev, C.M. Caskey, A.N. Fioretti, D.S. Ginley, J. Vidal, V. Stevanović, E. Tea, and S. Lany: Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014). doi:10.1021/jz5001787.

    CAS  Google Scholar 

  38. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, and O.M. Bakr: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). doi:10.1126/science.aaa2725.

    CAS  Google Scholar 

  39. K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H.J. Snaith, V. Dyakonov, and H.J. Bolink: Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014). doi:10.1038/srep06071.

    CAS  Google Scholar 

  40. E.M. Miller, Y. Zhao, C.C. Mercado, S.K. Saha, J.M. Luther, K. Zhu, V. Stevanovic, C.L. Perkins, and J. van de Lagemaat: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014). doi:10.1002/adma.201305172.

    Google Scholar 

  41. T. Umebayashi, K. Asai, T. Kondo, and A. Nakao: Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003). doi:10.1103/PhysRevB.67.155405.

    Google Scholar 

  42. E.M. Miller, Y. Zhao, C.C. Mercado, S.K. Saha, J.M. Luther, K. Zhu, V. Stevanović, C.L. Perkins and J. van de Lagemaat: Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 22122–22130 (2014). doi:10.1039/C4CP03533J.

    CAS  Google Scholar 

  43. P. Umari, E. Mosconi, and F. De Angelis: Relativistic solar cells. Sci. Rep. 4, 4467 (2014).

    Google Scholar 

  44. S.M. Sze and K.N. Kwok: Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2007.

    Google Scholar 

  45. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, and A. Walsh: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    CAS  Google Scholar 

  46. R.H. Bube: Photoelectronic Properties of Semiconductors (Cambridge University Press: Cambridge, UK, 1992).

    Google Scholar 

  47. Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, and P. Meredith: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2015). doi:10.1038/nphoton.2014.284.

    CAS  Google Scholar 

  48. E.J. Juarez-Perez, R.S. Sanchez, L. Badia, G. Garcia-Belmonte, Y.S. Kang, I. Mora-Sero, and J. Bisquert: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014). doi:10.1021/jz5011169.

    CAS  Google Scholar 

  49. F. Brivio, A.B. Walker, and A. Walsh: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from firstprinciples. APL Mater. 1, 042111 (2013). doi:10.1063/1.4824147.

    Google Scholar 

  50. J. Kim, S.-H. Lee, J.H. Lee, and K.-H. Hong: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014). doi:10.1021/jz500370k.

    CAS  Google Scholar 

  51. S.D. Lester, F.A. Ponce, M.G. Craford, and D.A. Steigerwald: High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 66, 1249 (1995). doi:10.1063/1.113252.

    CAS  Google Scholar 

  52. M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J.W. Garland, and S. Sivananthan: Single-crystal II–VI on Si single-junction and tandem solar cells. Appl. Phys. Lett. 96, 153502 (2010). doi:10.1063/1.3386529.

    Google Scholar 

  53. Y.S. Lee, M.T. Winkler, S.C. Siah, R. Brandt, and T. Buonassisi: Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering. Appl. Phys. Lett. 98, 192115 (2011). doi:10. 1063/1.3589810.

    Google Scholar 

  54. J.Y.W. Seto: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975). doi:10.1063/1.321593.

    CAS  Google Scholar 

  55. J. Yan, P. Gorai, B. Ortiz, S. Miller, S.A. Barnett, T. Mason, V. Stevanović, and E.S. Toberer: Material descriptors for predicting thermoelectric performance. Energy Env. Sci. 8, 983–994 (2014). doi:10.1039/C4EE03157A.

    Google Scholar 

  56. J. Feng: Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014). doi:10.1063/1.4885256.

    Google Scholar 

  57. J.J. Krich, B.I. Halperin, and A. Aspuru-Guzik: Nonradiative lifetimes in intermediate band photovoltaics—absence of lifetime recovery. J. Appl. Phys. 112, 013707 (2012). doi:10.1063/1.4732085.

    Google Scholar 

  58. S. DeWolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, and C. Ballif: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014). doi:10.1021/jz500279b.

    CAS  Google Scholar 

  59. P.J. Sellin: Thick film compound semiconductors for X-ray imaging applications. Nucl. Instrum. Methods Phys. Res. A 563, 1–8 (2006). doi:10.1016/j.nima.2006.01.110.

    CAS  Google Scholar 

  60. G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, and X. Gonze: Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013). doi: doi:10.1038/ncomms3292.

    Google Scholar 

  61. R. Nechache, C. Harnagea, S. Licoccia, E. Traversa, A. Ruediger, A. Pignolet, and F. Rosei: Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. Appl. Phys. Lett. 98, 202902 (2011). doi:10.1063/1.3590270.

    Google Scholar 

  62. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009). doi:10.1111/j.1551-2916.2009.03061.x.

    Google Scholar 

  63. A.-V. Mudring: Thallium halides–new aspects of the stereochemical activity of electron lone pairs of heavier main-group elements. Eur. J. Inorg. Chem. 2007, 882–890 (2007). doi:10.1002/ejic.200600975.

    Google Scholar 

  64. M.-H. Du and D.J. Singh: Enhanced born charge and proximity to ferroelectricity in thallium halides. Phys. Rev. B 81, 144114 (2010).

    Google Scholar 

  65. M.-H. Du and D.J. Singh: Enhanced born charges in III-VII, IV-VII2, and V-VII3 compounds. Phys. Rev. 82, 045203 (2010). doi:10.1103/PhysRevB.82.045203.

    Google Scholar 

  66. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder: Python materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013). doi:10.1016/j.commatsci.2012.10.028.

    CAS  Google Scholar 

  67. A. Walsh, D.J. Payne, R.G. Egdell, and G.W. Watson: Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455 (2011). doi:10.1039/c1cs15098g.

    CAS  Google Scholar 

  68. V. Stevanović, K. Hartman, R. Jaramillo, S. Ramanathan, T. Buonassisi, and P. Graf: Variations of ionization potential and electron affinity as a function of surface orientation: the case of orthorhombic SnS. Appl. Phys. Lett. 104, 211603 (2014). doi:10.1063/1.4879558.

    Google Scholar 

  69. I. Chung, J.-H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, and M.G. Kanatzidis: CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012). doi:10.1021/ja301539s.

    CAS  Google Scholar 

  70. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, and F. Rosei: Bandgap tuning of multiferroic oxide solar cells. Nat. Photonic. 9, 61–67 (2015). doi:10.1038/nphoton.2014.255.

    CAS  Google Scholar 

  71. A.T. Lintereur, W. Qiu, J.C. Nino, and J. Baciak: Characterization of bismuth tri-iodide single crystals for wide band-gap semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. 652, 166–169 (2011). doi:10.1016/j.nima.2010.12.013.

    CAS  Google Scholar 

  72. J. Vidal, S. Lany, J. Francis, R. Kokenyesi, and J. Tate: Structural and electronic modification of photovoltaic SnS by alloying. J. Appl. Phys. 115, 113507 (2014). doi:10.1063/1.4868974.

    Google Scholar 

  73. E.A. Secco and A. Sharma: Structure stabilization: locking-in fast cation conductivity phase in TlI. J. Phys. Chem. Solid. 56, 251–254 (1995). doi:10.1016/0022-3697(94)00172-3.

    CAS  Google Scholar 

  74. R. Nitsche and W.J. Merz: Photoconduction in ternary V-VI-VII compounds. J. Phys. Chem. Solids 13, 154–155 (1960).

    CAS  Google Scholar 

  75. N.T. Hahn, A.J.E. Rettie, S.K. Beal, R.R. Fullon, and C.B. Mullins: n-BiSI thin films: selenium doping and solar cell behavior. J. Phys. Chem. 116, 24878–24886 (2012). doi:10.1021/jp3088397.

    CAS  Google Scholar 

  76. N.T. Hahn, J.L. Self, and C.B. Mullins: BiSI micro-rod thin films: efficient solar absorber electrodes? J. Phys. Chem. Lett. 3, 1571–1576 (2012). doi:10.1021/jz300515p.

    CAS  Google Scholar 

  77. X. Zhang, L. Zhang, T. Xie, and D. Wang: Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. 113, 7371–7378 (2009). doi:10.1021/jp900812d.

    CAS  Google Scholar 

  78. K. Zhao, X. Zhang, and L. Zhang: The first BiOI-based solar cells. Electrochem. Commun. 11, 612–615 (2009). doi:10.1016/j.elecom.2008.12.041.

    CAS  Google Scholar 

  79. K.T. Butler, J.M. Frost, and A. Walsh: Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838–848 (2015). doi:10.1039/C4EE03523B.

    CAS  Google Scholar 

  80. B.V. Gabrel’yan, A.A. Lavrentiev, I.Y. Nikiforov, and V.V. Sobolev: Electronic energy structure of MBiS2 (M = Li, Na, K) calculated with allowance for the difference between the M-S and Bi-S bond lengths. J. Struct. Chem. 49, 788–794 (2008). doi:10.1007/s10947-008-0140-2.

    Google Scholar 

  81. S. Kang, Y. Hong, Y. Jeon, and A. Facile: Synthesis and characterization of sodium bismuth sulfide (NaBiS2) under hydrothermal condition. Bull. Korean Chem. Soc. 35, 1887–1890 (2014). doi:10.5012/bkcs.2014.35.6.1887.

    CAS  Google Scholar 

  82. T.J. McCarthy, S.P. Ngeyi, J.H. Liao, D.C. DeGroot, T. Hogan, C.R. Kannewurf, and M.G. Kanatzidis: Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, beta.-CsBiS2, gamma.-CsBiS2, and K2Bi8Se13. Chem. Mater. 5, 331–340 (1993). doi:10.1021/cm00027a016.

    CAS  Google Scholar 

  83. T. Timofte and A.-V. Mudring: Indium(I) Tetraiodoaluminate. Z. Anorg. Allg. Chem. 634, 622–623 (2008). doi:10.1002/zaac.200700525.

    CAS  Google Scholar 

  84. S.V. Mel’nikova and A.I. Zaitsev: Ferroelectric phase transition in Cs3Bi2I9. Phys. Solid State 39, 1652–1654 (1997).

    Google Scholar 

  85. E.Y. Peresh, V.I. Sidei, N.I. Gaborets, O.V. Zubaka, I.P. Stercho, and I.E. Barchii: Influence of the average atomic number of the A2TeC6 and A3B2C9 (A = K, Rb, Cs, Tl(I); B = Sb, Bi; C = Br, I) compounds on theirmelting point and band gap. Inorg. Mater. 50, 101–106 (2014). doi:10.1134/S0020168514010166.

    CAS  Google Scholar 

  86. R. Jakubas and L. Sobczyk: Phase transitions in alkylammonium halogenoantimonates and bismuthates. Phase Transit. 20, 163–193 (1990). doi:10.1080/01411599008206873.

    CAS  Google Scholar 

  87. L.-M. Wu, X.-T. Wu, and L. Chen: Structural overview and structure–property relationships of iodoplumbate and iodobismuthate. Coord. Chem. Rev. 253, 2787–2804 (2009). doi:10.1016/j.ccr.2009.08.003.

    CAS  Google Scholar 

  88. T. Plackowski, D. Wlosewicz, P.E. Tomaszewski, J. Baran, and M.K. Marchewka: Specific heat of (NH2(CH3)2)3Bi2I9. Acta Phys. Pol. A 87, 635–641 (1995).

    CAS  Google Scholar 

  89. G. Kieslich, S. Sun, and A.K. Cheetham: Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014). doi:10.1039/C4SC02211D.

    CAS  Google Scholar 

  90. M.R. Filip, G.E. Eperon, H.J. Snaith, and F. Giustino: Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014). doi:10.1038/ncomms6757.

    CAS  Google Scholar 

  91. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. 54, 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169.

    CAS  Google Scholar 

  92. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/ PhysRevLett.77.3865.

    CAS  Google Scholar 

  93. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. 50, 17953–17979 (1994). doi:10.1103/PhysRevB.50.17953.

    Google Scholar 

  94. V. Stevanović, S. Lany, X. Zhang, and A. Zunger: Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. 85, 115104 (2012). doi:10.1103/PhysRevB.85.115104.

    Google Scholar 

  95. X. Wu, D. Vanderbilt, and D.R. Hamann: Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. 72, 035105 (2005). doi:10.1103/PhysRevB.72.035105.

    Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Center for Next Generation Materials by Design (CMGMD), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. R.E.B. acknowledges an NSF GRFP fellowship. The authors thank R. Jaramillo, R. Chakraborty, V. Steinmann, and R. Kurchin (MIT) as well as S. Lany and A. Zakutayev (NREL) for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riley E. Brandt or Tonio Buonassisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, R.E., Stevanović, V., Ginley, D.S. et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Communications 5, 265–275 (2015). https://doi.org/10.1557/mrc.2015.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.26

Navigation