Skip to main content

Advertisement

Log in

Rational design of nanomaterials from assembly and reconfigurability of polymer-tethered nanoparticles

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Polymer-based nanomaterials have captured increasing interest over the past decades for their promising use in a wide variety of applications including photovoltaics, catalysis, optics, and energy storage. Bottom-up assembly engineering based on the self- and directed-assembly of polymer-based building blocks has been considered a powerful means to robustly fabricate and efficiently manipulate target nanostructures. Here, we give a brief review of the recent advances in assembly and reconfigurability of polymer-based nanostructures. We also highlight the role of computer simulation in discovering the fundamental principles of assembly science and providing critical design tools for assembly engineering of complex nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S.C. Glotzer: Assembly engineering: materials design for the 21st centruy. Chem. Eng. Sci. 121, 3–9 (2014).

    Article  CAS  Google Scholar 

  2. H.J.C. Berendsen, D. van der Spoel, and R. van Drunen: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Article  CAS  Google Scholar 

  3. S. Plimpton: Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995).

    Google Scholar 

  4. J.A. Anderson and S.C. Glotzer: the development and expansion of HOOMD-blue through six years of GPU proliferation. arXiv preprint arXiv:1308.5587 (2013).

    Google Scholar 

  5. J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse, and S.C. Glotzer: Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97–107 (2015).

    Article  CAS  Google Scholar 

  6. F.S. Bates and G.H. Fredrickson: Block copolymers—designer soft materials. Phys. Today 52, 32 (1999).

    Article  CAS  Google Scholar 

  7. A.J. Meuler, M.A. Hillmyer, and F.S. Bates: Ordered network mesostructures in block polymer materials. Macromolecules 42, 7221–7250 (2009).

    Article  CAS  Google Scholar 

  8. W. Xu, K. Jiang, P. Zhang, and A.-C. Shi: A strategy to explore stable and metastable ordered phases of block copolymers. J. Phys. Chem. B 117, 5296–5305 (2013).

    Article  CAS  Google Scholar 

  9. S.C. Glotzer and M.J. Solomon: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  10. Z. Zhang, M.A. Horsch, M.H. Lamm, and S.C. Glotzer: Tethered nano building blocks: toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3, 1341–1346 (2003).

    Article  CAS  Google Scholar 

  11. C.R. Iacovella, M.A. Horsch, Z. Zhang, and S.C. Glotzer: Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants. Langmuir 21, 9488–9494 (2005).

    Article  CAS  Google Scholar 

  12. M.A. Horsch, Z. Zhang, and S.C. Glotzer: Simulation studies of self-assembly of end-tethered nanorods in solution and role of rod aspect ratio and tether length. J. Chem. Phys. 125, 184903 (2006).

    Article  CAS  Google Scholar 

  13. T.D. Nguyen, Z. Zhang, and S.C. Glotzer: Molecular simulation study of self-assembly of tethered V-shaped nanoparticles. J. Chem. Phys. 129, 244903 (2008).

    Article  CAS  Google Scholar 

  14. C.R. Iacovella, A.S. Keys, and S.C. Glotzer: Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl. Acad. Sci. U.S.A. 108, 20935–20940 (2011).

    Article  CAS  Google Scholar 

  15. C. Iacovella, A. Keys, M. Horsch, and S. Glotzer: Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase. Phys. Rev. E 75, 1–4 (2007).

    Article  CAS  Google Scholar 

  16. C.R. Iacovella and S.C. Glotzer: Phase behavior of ditethered nanospheres. Soft Matter 5, 4492–4498 (2009).

    Article  CAS  Google Scholar 

  17. R.L. Marson, C.L. Phillips, J.A. Anderson, and S.C. Glotzer: Phase behavior and complex crystal structures of self-assembled tethered nanoparticle telechelics. Nano Lett. 14, 2071–2078 (2014).

    Article  CAS  Google Scholar 

  18. N.A. Kotov: Nanoparticle Assemblies and Superstructures (CRC Press, Boca Raton, FL, 2014).

    Google Scholar 

  19. J. Lahann: Recent progress in nano-biotechnology: compartmentalized micro- and nanoparticles via electrohydrodynamic co-jetting. Small 7, 1149–1156 (2011).

    Article  CAS  Google Scholar 

  20. R. Subbiah, M. Veerapandian, and K.S. Yun: Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 17, 4559–4577 (2010).

    Article  CAS  Google Scholar 

  21. K. Yue, C. Liu, K. Guo, K. Wu, X.-H. Dong, H. Liu, M. Huang, C. Wesdemiotis, S.Z.D. Cheng, and W.-B. Zhang: Exploring shape amphiphiles beyond giant surfactants: molecular design and click synthesis. Polym. Chem. 4, 1056–1067 (2013).

    Article  CAS  Google Scholar 

  22. Y. Zhang, F. Lu, K.G. Yager, D. van der Lelie, and O. Gang: A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 8, 865–872 (2013).

    Article  CAS  Google Scholar 

  23. R.J. Macfarlane, B. Lee, M.R. Jones, N. Harris, G.C. Schatz, and C.A. Mirkin: Nanoparticle Superlattice Engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  24. W. Li, Y. Kim, J. Li, and M. Li: Dynamic self-assembly of coordination polymers in aqueous solution. Soft Matter 10, 5231–5242 (2014).

    Article  CAS  Google Scholar 

  25. K.J. Lee, J. Yoon, and J. Lahann: Recent advances with anisotropic particles. Curr. Opin. Colloid Interface Sci. 16, 195–202 (2011).

    Article  CAS  Google Scholar 

  26. K. Lee, J. Yoon, S. Rahmanic, S. Hwang, S. Bhaskar, S. Mitragotri, and J. Lahann: Spontaneous shape reconfigurations in multicompartmental microcylinders. Proc. Natl. Acad. Sci. U.S.A. 109, 16057–16062 (2012).

    Article  CAS  Google Scholar 

  27. H.C. Kolb, M.G. Finn, and K.B. Sharpless: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  28. O.-S. Lee, T.R. Prytkova, and G.C. Schatz: Using DNA to link gold nanoparticles, polymers and molecules: a theoretical perspective. J. Phys. Chem. Lett. 1, 1781–1788 (2010).

    Article  CAS  Google Scholar 

  29. C. Zhang, R.J. Macfarlane, K.L. Young, C.H.J. Choi, L. Hao, E.- l Auyeung, G. Liu, X. Zhou, and C.A. Mirkin: A general approach to DNA-programmable atom equivalents. Nat. Mater. 12, 741–746 (2013).

    Article  CAS  Google Scholar 

  30. W.B. Zhang, X. Yu, C.L. Wang, H.J. Sun, I.F. Hsieh, Y. Li, X.H. Dong, K. Yue, R. Van Horn, and S.Z.D. Cheng: macromolecular science: from “nanoatoms” to giant molecules. Macromolecules 47, 1221–1239 (2014).

    Article  CAS  Google Scholar 

  31. X. Yu, K. Yue, I.-F. Hsieh, and Y. Li: Giantsurfactants provide a versatile platform for sub-10-nm nanostructure engineering. Proc. Natl. Acad. Sci. U.S.A. 110, 10078–10083 (2013).

    Article  CAS  Google Scholar 

  32. X. Yu, Y. Li, X.-H. Dong, K. Yue, Z. Lin, X. Feng, M. Huang, W.-B. Zhang, and S.Z.D. Cheng: Giant surfactants based on molecular nanoparticles: Precise synthesis and solution self-assembly. J. Polym. Sci. B: Polym. Phys., 1309–1325 (2014).

    Google Scholar 

  33. C.S. Thomas, M.J. Glassman, and B.D. Olsen: Solid-state nanostructured materials from self-assembly of a globular protein-polymer diblock copolymer. ACS Nano 5, 5697–5707 (2011).

    Article  CAS  Google Scholar 

  34. B.D. Olsen: Self-assembly of globular-protein-containing block copolymers. Macromol. Chem. Phys. 214, 1659–1668 (2013).

    Article  CAS  Google Scholar 

  35. C.N. Lam and B.D. Olsen: Phase transitions in concentrated solution self-assembly of globular protein-polymer block copolymers. Soft Matter 9, 2393–2402 (2013).

    Article  CAS  Google Scholar 

  36. Y. Han, Y. Xiao, Z. Zhang, B. Liu, P. Zheng, S. He, and W. Wang: Synthesis of polyoxometalate-polymer hybrid polymers and their hybrid vesicular assembly. Macromolecules 42, 6543–6548 (2009).

    Article  CAS  Google Scholar 

  37. J. Rieger, T. Antoun, S.-H. Lee, M. Chenal, G. Pembouong, J.L. Haye, I. Azcarate, B. Hasenknopf, and E. Lacote: Synthesis and characterization of a thermoresponsive polyoxometalate-polymer hybrid. Chemistry 18, 3355–3361 (2012).

    Article  CAS  Google Scholar 

  38. A.B. Pawar and I. Kretzschmar: Fabrication, assembly, and application of patchy particles. Macro- Mol. Rapid Commun. 31, 150–168 (2010).

    Article  CAS  Google Scholar 

  39. S. Sacanna and D. Pine: Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

    Article  CAS  Google Scholar 

  40. S.S. Chang, C.W. Shih, C.D. Chen, W.C. Lai, and C.R.C. Wang: The shape transition of gold nanorods. Langmuir 15, 701–709 (1999).

    Article  CAS  Google Scholar 

  41. S. Link, C. Burda, B. Nikoobakht, and M.A. El-sayed: Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 6152–6153 (2000).

    Article  CAS  Google Scholar 

  42. S. Link, Z.L. Wang, and M.A. El-sayed: How does a gold nanorod melt?J. Phys. Chem. B 104, 7867–7870 (2000).

    Article  CAS  Google Scholar 

  43. J.K. Kim, E. Lee, Y.B. Lim, and M. Lee: Supramolecular capsules with gated pores from an amphiphilic rod assembly. Angew. Chem. Int. Ed. Engl. 47, 4662–4666 (2008).

    Article  CAS  Google Scholar 

  44. E. Lee, J.K. Kim, and M. Lee: Reversible scrolling of two-dimensional sheets from self-assembly of laterally-grafted amphiphilic rods. Angew. Chem. Int. Ed. Engl. 48, 3657 (2009).

    Article  CAS  Google Scholar 

  45. K. Chockalingam, M. Blenner, and S. Banta: Design and application of stimulus-responsive peptide systems. Prot. Eng., Des. Sel. 20, 155–161 (2007).

    Article  CAS  Google Scholar 

  46. K.E. Gebhardt, S. Ahn, G. Venkatachalam, and D.A. Savin: Rod-sphere transition in polybutadiene-poly(l-lysine) block copolymer assemblies. Langmuir 23, 2851–2856 (2007).

    Article  CAS  Google Scholar 

  47. K.E. Gebhardt, S. Ahn, G. Venkatachalam, and D.A. Savin: Role of secondary structure changes on the morphology of polypeptide-based block copolymer vesicles. J. Colloid Interface Sci. 317, 70–76 (2008).

    Article  CAS  Google Scholar 

  48. J.W. Yoo and S. Mitragotri: Polymer particles that switch shape in response to a stimulus. Proc. Nat. Acad. Sci. U.S.A. 107, 11205–11210 (2010).

    Article  CAS  Google Scholar 

  49. F.S. Bates and G.H. Fredrickson: Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990).

    Article  CAS  Google Scholar 

  50. F.S. Bates, M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney, and G.H. Fredrickson: Multiblock polymers: panacea or Pandora’s box?Science 336, 434–440 (2012).

    Article  CAS  Google Scholar 

  51. T.H. Epps III, E.W. Cochran, C.M. Hardy, T.S. Bailey, R.S. Waletzko, and F.S. Bates: Network phases in ABC triblock copolymers. Macromolecules 37, 7085–7088 (2004).

    Article  CAS  Google Scholar 

  52. J. Qin, F.S. Bates, and D.C. Morse: Phase behavior of nonfrustrated ABC triblock copolymers: weak and intermediate segregation. Macromolecules 43, 5128–5136 (2010).

    Article  CAS  Google Scholar 

  53. K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita: Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 1–4 (2007).

    Article  CAS  Google Scholar 

  54. M.M. Maye, M.T. Kumara, D. Nykypanchuk, W.B. Sherman, and O. Gang: Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 5, 116–120 (2010).

    Article  CAS  Google Scholar 

  55. T. Gibaud, E. Barry, M.J. Zakhary, M. Henglin, A. Ward, Y. Yang, C. Berciu, R. Oldenbourg, M.F. Hagan, D. Nicastro, R.B. Meyer, and Z. Dogic: Reconfigurable self-assembly through chiral control of interfacial tension. Nature 481, 348–351 (2012).

    Article  CAS  Google Scholar 

  56. Y. Zhang, F. Lu, D. van der Lelie, and O. Gang: Continuous phase transformation in nanocube assemblies. Phys. Rev. Lett. 107, 135701 (2011).

    Article  CAS  Google Scholar 

  57. S.C. Glotzer, M.A. Horsch, C.R. Iacovella, X.L. Zhang, E. Chan, and X. Zhang: Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid Interface Sci. 10, 287–295 (2005).

    Article  CAS  Google Scholar 

  58. C. Tschierske: Liquid crystal engineering-new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36, 1930–1970 (2007).

    Article  CAS  Google Scholar 

  59. C.L. Phillips, C.R. Iacovella, and S.C. Glotzer: Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems. Soft Matter 6, 1693–1703 (2010).

    Article  CAS  Google Scholar 

  60. A. Jayaraman and K.S. Schweizer: effective interactions, structure, and phase behavior of lightly tethered nanoparticles in polymer melts. Macromolecules 41, 9430–9438 (2008).

    Article  CAS  Google Scholar 

  61. A. Jayaraman and K.S. Schweizer: Structure and assembly of dense solutions and melts of single tethered nanoparticles. J. Chem. Phys. 128, 164904 (2008).

    Article  CAS  Google Scholar 

  62. A. Jayaraman and K.S. Schweizer: Effective interactions and self-assembly of hybrid polymer grafted nanoparticles in a homopolymer matrix. Macromolecules 42, 8423–8434 (2009).

    Article  CAS  Google Scholar 

  63. L.M. Hall, A. Jayaraman, and K.S. Schweizer: Molecular theories of polymer nanocomposites. Curr. Opin. Solid State Mater. Sci. 14, 38–48 (2010).

    Article  CAS  Google Scholar 

  64. N. Nair, N. Wentzel, and A. Jayaraman: Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix. J. Chem. Phys. 134, 194906 (2011).

    Article  CAS  Google Scholar 

  65. C.R. Iacovella and S.C. Glotzer: Complex crystal structures formed by the self-assembly of ditethered nanospheres. Nano Lett. 9, 1206–1211 (2009).

    Article  CAS  Google Scholar 

  66. T.D. Nguyen and S.C. Glotzer: Reconfigurable assemblies of shape-changing nanorods. ACS nano 4, 2585–2594 (2010).

    Article  CAS  Google Scholar 

  67. M.A. Horsch, Z. Zhang, and S.C. Glotzer: Self-assembly of end-tethered nanorods in a neat system and role of block fractions and aspect ratio. Soft Matter 6, 945–954 (2010).

    Article  CAS  Google Scholar 

  68. C.R. Iacovella, M.A. Horsch, and S.C. Glotzer: Local ordering of polymer-tethered nanospheres and nanorods and the stabilization of the double gyroid phase. J. Chem. Phys. 129, 044902 (2008).

    Article  CAS  Google Scholar 

  69. M.A. Horsch, Z. Zhang, and S.C. Glotzer: Self-assembly of laterally-tethered nanorods. Nano Lett. 6, 2406–2413 (2006).

    Article  CAS  Google Scholar 

  70. M. Horsch, Z. Zhang, and S. Glotzer: Self-assembly of polymer-tethered nanorods. Phys. Rev. Lett. 95, 1–4 (2005).

    Article  CAS  Google Scholar 

  71. B. Capone, I. Coluzza, F. LoVerso, C.N. Likos, and R. Blaak: telechelic star polymers as self-assembling units from the molecular to the macroscopic scale. Phys. Rev. Lett. 109, 238301 (2012).

    Article  CAS  Google Scholar 

  72. A.M. Urbas, M. Maldovan, P. DeRege, and E.L. Thomas: Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850–1853 (2002).

    Article  CAS  Google Scholar 

  73. M. Maldovan, A. Urbas, N. Yufa, W. Carter, and E. Thomas: Photonic properties of bicontinuous cubic microphases. Phys. Rev. B 65, 1–5 (2002).

    Article  CAS  Google Scholar 

  74. M. Maldovan, C.K. Ullal, W.C. Carter, and E.L. Thomas: Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups. Nat. Mater. 2, 664–667 (2003).

    Article  CAS  Google Scholar 

  75. M. Maldovan and E.L. Thomas: Diamond-structured photonic crystals. Nat. Mater. 3, 593–600 (2004).

    Article  CAS  Google Scholar 

  76. G.E. Schroder-Turk, T. Varslot, L. de Campo, S.C. Kapfer, and W. Mickel: A bicontinuous mesophase geometry with hexagonal symmetry. Langmuir: ACS J. Surfaces Colloids 27, 10475–10483 (2011).

    Article  CAS  Google Scholar 

  77. Y. Matsushita, K. Hayashida, T. Dotera, and A. Takano: Kaleidoscopic morphologies from ABC star-shaped terpolymers. J. Phys.: Condens. Matter 23, 284111 (2011).

    Google Scholar 

  78. J.J.K. Kirkensgaard: Kaleidoscopic tilings, networks and hierarchical structures in blends of 3-miktoarm star terpolymers. Interface Focus 2, 602–607 (2012).

    Article  Google Scholar 

  79. J.J.K. Kirkensgaard: Striped networks and other hierarchical structures in A mB mC n (2 m+n)-miktoarm star terpolymer melts. Phys. Rev. E 85, 031802 (2012).

    Article  CAS  Google Scholar 

  80. M.E. Evans, V. Robins, and S.T. Hyde: Periodic entanglement II: weavings from hyperbolic line patterns. Acta Crystallogr. A A69, 262–275 (2013).

    Article  CAS  Google Scholar 

  81. M.E. Evans and S.T. Hyde: Periodic entanglement I: networks from hyperbolic reticulations. Acta Crystallogr. A 241–261 (2013).

    Google Scholar 

  82. G.E. Schroder-Turk, L. de Campo, M.E. Evans, M. Saba, S.C. Kapfer, T. Varslot, K. Grosse-Brauckmann, S. Ramsden, and S.T. Hyde: Polycontinuous geometries for inverse lipid phases with more than two aqueous network domains. Faraday Discuss. 161, 215–247 (2013).

    Article  Google Scholar 

  83. J.J. Kirkensgaard, M.E. Evans, L. de Campo, and S.T. Hyde: Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks. Proc. Nat. Acad. Sci. U.S.A. 111, 1271–1276 (2014).

    Article  CAS  Google Scholar 

  84. S. Ma, Y. Hu, and R. Wang. Self-assembly of polymer tethered molecular nanoparticle shape amphiphiles in selective solvents. Macromolecules, 150424124622003 (2015).

    Google Scholar 

  85. Y.T. Lai, N.P. King, and T.O. Yeates: Principles for designing ordered protein assemblies. Trends Cell Biol. 22, 653–661 (2012).

    Article  CAS  Google Scholar 

  86. P.F. Damasceno, M. Engel, and S.C. Glotzer: predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  87. M. Engel, P.F. Damasceno, C.L. Phillips, and S.C. Glotzer: Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 1–8 (2014).

    Google Scholar 

  88. V.M.O. Batista and M.A. Miller: Crystallization of deformable spherical colloids. Phys. Rev. Lett. 105, 088305 (2010).

    Article  CAS  Google Scholar 

  89. T.D. Nguyen, E. Jankowski, and S.C Glotzer: Self-assembly and reconfigurability of shape-shifting particles. ACS Nano 5, 8892–8903 (2011).

    Article  CAS  Google Scholar 

  90. H. Eshet, F. Bruneval, and M. Parrinello: New Lennard-Jones metastable phase. J. Chem. Phys. 129, 026101 (2008).

    Article  CAS  Google Scholar 

  91. M. Saba, M. Thiel, M. Turner, S. Hyde, M. Gu, K. Grosse-Brauckmann, D. Neshev, K. Mecke, and G. Schroder-Turk: Circular dichroism in biological photonic crystals and cubic chiral nets. Phys. Rev. Lett. 106, 103902 (2011).

    Article  CAS  Google Scholar 

  92. M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schroder-Turk, and M. Gu: Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 1–5 (2013).

    Article  CAS  Google Scholar 

  93. M. Saba, M.D. Turner, K. Mecke, M. Gu, and G.E. Schroder-Turk: Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 1–16 (2013).

    Article  CAS  Google Scholar 

  94. F. Liu, Y. Hou, and S. Gao: Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chem. Soc. Rev. 44, 1974–2018 (2014).

    Google Scholar 

  95. A.R. Oganov, A.O. Lyakhov, and M. Valle: How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 44, 227–237 (2011).

    Article  CAS  Google Scholar 

  96. N. Hansen and A. Ostermeier: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001).

    Article  CAS  Google Scholar 

  97. M.Z. Miskin and H.M. Jaeger: Evolving design rules for the inverse granular packing problem. Soft Matter 10, 3708 (2014).

    Article  CAS  Google Scholar 

  98. https://www.whitehouse.gov/mgi April 12, 2015].

Download references

Acknowledgments

Research supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-FG02-02ER46000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon C. Glotzer.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marson, R.L., Nguyen, T.D. & Glotzer, S.C. Rational design of nanomaterials from assembly and reconfigurability of polymer-tethered nanoparticles. MRS Communications 5, 397–406 (2015). https://doi.org/10.1557/mrc.2015.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.54

Navigation