Skip to main content
Log in

Angled physical vapor deposition techniques for non-conformal thin films and three-dimensional structures

  • Plasmonics, Photonics, and Metamaterials Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The field of nanophotonics has experienced a dramatic development in recent years, which requires ample candidate structures to achieve desirable functionalities. For many novel device designs in emerging field of transformation optics, optical metamaterials, and others, non-uniform and non-conformal thin films as well as three-dimensional (3D) structures are necessary to achieve advanced functionalities. Here, we report several techniques utilizing angled physical vapor deposition to obtain unique and complex 3D structures such as films with tapered thickness on planar substrates, tapered or uniform films on curved surfaces, and 3D nanorod arrays. These structures could enrich the existing practical design space for applications in nanophotonics and nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Z. Jacob, L.V. Alekseyev, and E. Narimanov: Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247 (2006).

    Article  Google Scholar 

  2. A.V. Kildishev and E.E. Narimanov: Impedance-matched hyperlens. Opt. Lett. 32, 3432 (2007).

    Article  Google Scholar 

  3. W. Wang, H. Xing, L. Fang, Y. Liu, J.X. Ma, L. Lin, C.T. Wang, and X.G. Luo: Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142 (2008).

    Article  CAS  Google Scholar 

  4. A.V. Kildishev and V.M. Shalaev: Engineering space for light via transformation optics. Opt. Lett. 33, 43 (2008).

    Article  Google Scholar 

  5. J.Y. Suh, M.D. Huntington, C.H. Kim, W. Zhou, M.R. Wasielewski, and T.W. Odom: Extraordinary Nonlinear absorption in 3D bowtie nanoanten-nas. Nano Lett. 12, 269 (2012).

    Article  CAS  Google Scholar 

  6. K. Robbie, J.C. Sit, and M.J. Brett: Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol. B 16, 1115 (1998).

    Article  CAS  Google Scholar 

  7. M.M. Hawkeye and M.J. Brett: Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317 (2007).

    Article  CAS  Google Scholar 

  8. Y.P. Zhao, D.X. Ye, G.C. Wang, and T.M. Lu: Designing nanostructures by glancing angle deposition. Proc. SPIE 5219, 59 (2003).

    Article  Google Scholar 

  9. A.G. Mark, J.G. Gibbs, T.C. Lee, and P. Fischer: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802 (2013).

    Article  CAS  Google Scholar 

  10. M.O. Jensen and M.J. Brett: Square spiral 3D photonic bandgap crystals at telecommunications frequencies. Opt. Express 13, 3348 (2005).

    Article  Google Scholar 

  11. W.L. Barnes, A. Dereux, and T.W. Ebbesen: Surface plasmon subwave-length optics. Nature 424, 824 (2003).

    Article  CAS  Google Scholar 

  12. S. Lai, S. Link, and N.J. Halas: Nano-opticsfrom sensing to waveguiding. Nat. Photonics 1, 641 (2007).

    Article  Google Scholar 

  13. Z.W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang: Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article  CAS  Google Scholar 

  14. D.L. Lu and Z.W. Liu: Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).

    Article  Google Scholar 

  15. A. Boltasseva and H.A. Atwater: Low-loss plasmonic metamaterials. Science 331, 290 (2011).

    Article  CAS  Google Scholar 

  16. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, and A. Boltasseva: Searching for better plasmonic materials. Laser Photonics Rev. 4, 795 (2010).

    Article  CAS  Google Scholar 

  17. U. Guler, A. Boltasseva, and V.M. Shalaev: Refractory plasmonics. Science 344, 263 (2014).

    Article  CAS  Google Scholar 

  18. N. Kinsey, M. Ferrera, V.M. Shalaev, and A. Boltasseva: Examining nano-photonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. J. Opt. Soc.Am. B 32, 121 (2015).

    Article  CAS  Google Scholar 

  19. W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J.G. Guan, V.M. Shalaev, and A.V. Kildishev: Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959 (2014).

    Article  CAS  Google Scholar 

  20. U. Guler, J.C. Ndukaife, G.V. Naik, A.G.A. Nnanna, A.V. Kildishev, V.M. Shalaev, and A. Boltasseva: Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 13, 6078 (2013).

    Article  CAS  Google Scholar 

  21. N. Kinsey, M. Ferrera, G.V. Naik, V.E. Babicheva, V.M. Shalaev, and A. Boltasseva: Experimental demonstration of titanium nitride plasmonic interconnects. Opt. Express 22, 12238 (2014).

    Article  CAS  Google Scholar 

  22. U. Guler, V.M. Shalaev, and A. Boltasseva: Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 18, 227 (2015).

    Article  CAS  Google Scholar 

  23. Y.G. Yang, X.W. Zhou, R.A. Johnson, and H.N.G. Wadley: Monte Carlo simulation of hyperthermal physical vapor deposition. Acta Mater. 49, 3321 (2001).

    Article  CAS  Google Scholar 

  24. W. Chen, M.D. Thoreson, A.V. Kildishev, and V.M. Shalaev: Fabrication and optical characterizations of smooth silver-silica nanocomposite films. Laser Phy. Lett. 7, 677 (2010).

    Article  CAS  Google Scholar 

  25. P.R. West, N. Kinsey, M. Ferrera, A.V. Kildishev, V.M. Shalaev, and A. Boltasseva: Adiabatically tapered hyperbolic metamaterials for dispersion control of high-k waves. Nano Lett. 15, 498 (2015).

    Article  CAS  Google Scholar 

  26. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner: Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009).

    Article  CAS  Google Scholar 

  27. H.H. Wang and Y.P. Zhao: Nanostructure evolution of YBa2Cu3Ox thin films grown by pulsed-laser glancing-angle deposition. J. Vac. Sci. Technol. B 24, 1230 (2006).

    Article  CAS  Google Scholar 

  28. Y.P. Zhao: Dynamic shadowing growth and its energy applications. Front. Energy Res. 2, 38 (2015).

    Google Scholar 

  29. G.K. Kiema, M.J. Colgan, and M.J. Brett: Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers. Sol. Energy Mater. Sol. Cells 85, 321 (2005).

    Article  CAS  Google Scholar 

  30. M.S. Wong, M.F. Lee, C.L. Chen, and C.H. Huang: Vapor deposited sculptured nano-poroustitania films by glancing angle deposition for efficiency enhancement in dye-sensitized solar cells. Thin Solid Films 519, 1717 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge ARO MURI grant 56154-PH-MUR (W911NF-09-1-0539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Boltasseva.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., West, P.R., Meng, X. et al. Angled physical vapor deposition techniques for non-conformal thin films and three-dimensional structures. MRS Communications 6, 17–22 (2016). https://doi.org/10.1557/mrc.2016.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.3

Navigation