Skip to main content
Log in

Highly strained Ge micro-blocks bonded on Si platform for mid-infrared photonic applications

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Applying sufficient tensile strain to Ge leads to a direct bandgap group IV semiconductor, which emits in the mid-infrared (MIR) wavelength range. However, highly strained-Ge cannot be directly grown on Si because of its large lattice mismatch. In this work, we have developed a process based on Ge micro-bridge strain redistribution intentionally landed to the Si substrate. Traction arms were then partially etched to keep locally strained-Ge micro-blocks. Large tunable uniaxial stresses up to 4.2% strain were demonstrated in Ge, which was bonded on Si. Our approach allows envisioning integrated strained-Ge on Si platform for MIR-integrated optics. Silicon photonics merge optical and electronic components that can be integrated together onto a single microchip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A.C. Peacock, X. Liu, R. Osgood, and W. Green: Silicon-based heterogeneous photonic integrated circuits for the mid-infrared. Opt. Mater. Express 3, 1523 (2013).

    Article  Google Scholar 

  2. R. Soref: Mid-infrared photonics in silicon and germanium. Nat. Photonics 4, 495–;497 (2010).

    Article  CAS  Google Scholar 

  3. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, W. Bogaerts, L. Cerutti, J.B. Rodriguez, and E. Tournié: Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscope from 1510 to 2300 nm abstract: Opt. Express 21, 6101–;6108 (2013).

    Article  CAS  Google Scholar 

  4. P. Barritault, M. Brun, P. Labeye, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti: Design, fabrication and characterization of an AWG at 4.5 µm. Opt. Express 23, 26168 (2015).

    Article  CAS  Google Scholar 

  5. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens: Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared. Appl. Phys. Lett. 103, 16119 (2013).

    Article  Google Scholar 

  6. J.R. Reboul, L. Cerutti, J.B. Rodriguez, P. Grech, and E. Tournié: Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si. Appl. Phys. Lett. 99, 2009–;2012 (2011).

    Article  Google Scholar 

  7. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout: Room temperature InP DFB laser array directly grown on (001) silicon. Nat. Photonics 9, 837–;842 (2015).

    Article  CAS  Google Scholar 

  8. A. Gassenq, N. Hattasan, L. Cerutti, J.B. Rodriguez, E. Tournié, and G. Roelkens: Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip. Opt. Express 20, 11665 (2012).

    Article  CAS  Google Scholar 

  9. R. Wang, S. Sprengel, M. Muneeb, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens: 2 µm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. Opt. Express 23, 26834 (2015).

    Article  CAS  Google Scholar 

  10. J. Liu, X. Sun, R. Camacho-Aguilera, L.C. Kimerling, and J. Michel: Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679 (2010).

    Article  CAS  Google Scholar 

  11. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J.M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher: Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics 9, 88 (2015).

    Article  CAS  Google Scholar 

  12. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens: GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 20, 27297–;27303 (2012).

    Article  CAS  Google Scholar 

  13. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R.A. Soref, H.A. Naseem, B. Li, and S.-Q. Yu: Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection. Opt. Express 24, 4519 (2016).

    Article  CAS  Google Scholar 

  14. R. Geiger, T. Zabel, E. Marin, A. Gassenq, J.-M. Hartmann, J. Widiez, J. Escalante, K. Guilloy, N. Pauc, D. Rouchon, G.O. Diaz, S. Tardif, F. Rieutord, I. Duchemin, Y.-M. Niquet, V. Reboud, V. Calvo, A. Chelnokov, J. Faist, and H. Sigg: Uniaxially stressed germanium with fundamental direct band gap. Arxiv, 1-;9 (2015).

    Google Scholar 

  15. M. El Kurdi, M. Prost, A. Ghrib, S. Sauvage, X. Checoury, G. Beaudoin, I. Sagnes, G. Picardi, R. Ossikovski, and P. Boucaud: Direct band gap germanium microdisks obtained with silicon nitride stressor layers. ACS Photonics 3, 443 (2016).

    Article  CAS  Google Scholar 

  16. Z. Zhou, B. Yin, and J. Michel: On-chip light sources for silicon photonics. Light Sci. Appl. 4, e358 (2015).

    Article  CAS  Google Scholar 

  17. D.S. Sukhdeo, J. Petykiewicz, S. Gupta, D. Kim, S. Woo, Y. Kim, J. Vučković, K.C. Saraswat, and D. Nam: Ge microdisk with lithographically-tunable strain using CMOS-compatible process. Opt. Express 23, 33249–;33254 (2015).

    Article  CAS  Google Scholar 

  18. M.J. Süess, R. Geiger, R.A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg: Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photonics 7, 466–;472 (2013).

    Article  Google Scholar 

  19. A. Gassenq, K. Guilloy, G. Osvaldo Dias, N. Pauc, D. Rouchon, J.-M. Hartmann, J. Widiez, S. Tardif, F. Rieutord, J. Escalante, I. Duchemin, Y.-M. Niquet, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, and V. Calvo: 1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications. Appl. Phys. Lett. 107, 191904 (2015).

    Article  Google Scholar 

  20. V. Reboud, J. Widiez, J.-M. Hartmann, G. Osvaldo Dias, D. Fowler, A. Chelnokov, A. Gassenq, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabel, J. Faist, and H. Sigg: Structural and optical properties of 200 mm germanium-on- insulator (GeOI) substrates for silicon photonics applications. Proc. SPIE 936714, 1–;6 (2015).

    Google Scholar 

  21. J. Widiez, J.-M. Hartmann, F. Mazen, S. Sollier, C. Veytizou, Y. Bogumilowicz, E. Augendre, M. Martin, F. Gonzatti, M.-C. Roure, J. Duvernay, V. Loup, C. Euvrard-Colnat, A. Seignard, T. Baron, R. Cipro, F. Bassani, A.-M. Papon, C. Guedj, I. Huyet, M. Rivoire, P. Besson, C. Figuet, W. Schwarzenbach, D. Delprat, and T. Signamarcheix: SOI-type bonded structures for advanced technology nodes. ECS Trans. 64, 35–;48 (2014).

    Article  CAS  Google Scholar 

  22. V. Reboud, A. Gassenq, K. Guilloy, G. Osvaldo Dias, N. Pauc, D. Rouchon, J.-M. Hartmann, J. Widiez, S. Tardif, F. Rieutord, J. Escalante, I. Duchemin, Y.-M. Niquet, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, and V. Calvo: Ultra-high amplified strains in 200-mm optical germanium-on-insulator (GeOI) substrates: towards CMOS-compatible Ge lasers. Proc. SPIE 9752, 14 (2016).

    Google Scholar 

  23. A. Gassenq, S. Tardif, K. Guilloy, N. Pauc, M. Bertrand, D. Rouchon, J.M. Hartmann, J. Widiez, J. Rothman, Y.M. Niquet, I. Duchemin, J. Faist, T. Zabel, H. Sigg, F. Rieutord, A. Chelnokov, V. Reboud, V. Calvo: High-quality and homogeneous 200-mm GeOI wafers processed for high strain induction in Ge. Proc. SPIE OPTO 10108, 1B-5 (2017). DOI:10.1117/12.2251790.

  24. A. Gassenq, S. Tardif, K. Guilloy, I. Duchemin, G.O. Dias, N. Pauc, D. Rouchon, J.M. Hartmann, J. Widiez, J. Escalante, Y.M. Niquet, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, F. Rieutord, V. Reboud, and V. Calvo: Accurate strain measurements in highly strained Ge microbridges. Appl. Phys. Lett. 108, 241902 (2016).

    Article  Google Scholar 

  25. M. Süess, R. Minamisawa, R. Geiger, K. Bourdelle, H. Sigg, and R. Spolenak: Power-dependent Raman analysis of highly strained Si nanobridges. Nano Lett. 14, 1249–;1254 (2014).

    Article  Google Scholar 

  26. A. Gassenq, S. Tardif, K. Guilloy, I. Duchemin, N. Pauc, D. Rouchon, J.M. Hartmann, J. Widiez, Y.M. Niquet, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, F. Rieutord, V. Reboud, and V. Calvo: Raman-strain relations in highly strained Ge: uniaxial <100>, <110> and biaxial (001) stress. J. Appl. Phys. 121, 1 (2017).

    Article  Google Scholar 

  27. R.A. Minamisawa, M.J. Süess, R. Spolenak, J. Faist, C. David, J. Gobrecht, K.K. Bourdelle, and H. Sigg: Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Nat. Commun. 3, 1096 (2012).

    Article  CAS  Google Scholar 

  28. K. Guilloy, N. Pauc, A. Gassenq, Y.M. Niquet, J.M. Escalante, I. Duchemin, S. Tardif, G. Osvaldo Dias, D. Rouchon, J. Widiez, J.M. Hartmann, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, and V. Calvo: Germanium under high tensile stress: nonlinear dependence of direct band gas vs strain. ACS Photonics 3, 1907–1911 (2016).

    Article  CAS  Google Scholar 

  29. F. Fournel, H. Moriceau, C. Ventosa, L. Libralesso, Y. Le Tiec, T. Signamarcheix, and F. Rieutord: Low temperature wafer bonding. ECS Trans. 16, 475–;488 (2008).

    Article  Google Scholar 

  30. C. Rauer, F. Rieutord, J.M. Hartmann, A.M. Charvet, F. Fournel, D. Mariolle, C. Morales, and H. Moriceau: Hydrophobic direct bonding of silicon reconstructed surfaces. Microsyst. Technol. 19, 675–;679 (2013).

    Article  CAS  Google Scholar 

  31. G. Gaudin, G. Riou, D. Landru, C. Tempesta, I. Radu, M. Sadaka, K. Winstel, E. Kinser, and R. Hannon: Low temperature direct wafer to wafer bonding for 3D integration: direct bonding, surf-c preparation, wafer-to-wafer alignment. In IEEE 3D Systems Integration Conf. 2010, 3DIC 2010 (2010), pp. 3–;6.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Plateforme de Technologie Amont and 41 in Grenoble for the clean room facilities and Dhruv Singhal for his language expertise. This work was supported by the CEA Phare project photonics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gassenq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gassenq, A., Guilloy, K., Pauc, N. et al. Highly strained Ge micro-blocks bonded on Si platform for mid-infrared photonic applications. MRS Communications 7, 691–694 (2017). https://doi.org/10.1557/mrc.2017.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.53

Navigation