Skip to main content
Log in

Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Bismuth vanadate (BiVO4) is regarded as a viable material for water oxidation due to various benefits such as visible light absorption, low production cost, and resistance to photocorrosion. Recently, numerous attempts have been adopted to improve the performance of BiVO4. In this work, we highlight the important strategies that have been made for improving the performance of the photoanode material, such as fabricating nanostructured electrode, controlling reacting facet, stacking with other materials, utilizing plasmonics, loading co-catalyst, and controlling the interfacial band bending with ferroelectrics. Taking advantage of the strategies, highly efficient BiVO4 photoelectrodes could be demonstrated. Finally, we discuss the perspective of BiVO4-based photoanodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Table I
Figure 7

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    CAS  Google Scholar 

  2. J.R. Bolton: Solar photoproduction of hydrogen: a review. Sol. Energy 57, 37 (1996).

    Article  CAS  Google Scholar 

  3. S.U.M. Khan and J. Akikusa: Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J. Phys. Chem. B 103, 7184 (1999).

    Article  CAS  Google Scholar 

  4. S.U.M. Khan: Stability and photoresponse of nanocrystalline n-TiO2 and n-TiO2/Mn2O3 thin film electrodes during water splitting reactions. J. Electrochem. Soc. 145, 89 (1998).

    Article  CAS  Google Scholar 

  5. J. Akikusa and S.U.M. Khan: Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/n-TiO2 cells. Int. J. Hydrogen Energy 27, 863 (2002).

    Article  CAS  Google Scholar 

  6. O. Khaselev and J.A. Turner: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998).

    Article  CAS  Google Scholar 

  7. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch: Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920 (2000).

    Article  CAS  Google Scholar 

  8. S.U.M. Khan, M. Al-Shahry, and W.B. Ingler: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002).

    Article  CAS  Google Scholar 

  9. J. Song, J. Cha, M.G. Lee, H.W. Jeong, S. Seo, J.A. Yoo, T.L. Kim, J. Lee, H. No, D.H. Kim, S.Y. Jeong, H. An, B.H. Lee, C.W. Bark, H. Park, H.W. Jang, and S. Lee: Template-engineered epitaxial BiVO4 photoanodes for efficient solar water splitting. J. Mater. Chem. A 5, 18831 (2017).

    Article  CAS  Google Scholar 

  10. J. Song, T.L. Kim, J. Lee, S.Y. Cho, J. Cha, S.Y. Jeong, H. An, W.S. Kim, Y.-S. Jung, J. Park, G.Y. Jung, D.-Y. Kim, J.Y. Jo, S.D. Bu, H.W. Jang, and S. Lee: Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Res. 11, 642 (2018).

    Article  CAS  Google Scholar 

  11. W. Wang, M.O. Tadé, and Z. Shao: Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44, 5371 (2015).

    Article  CAS  Google Scholar 

  12. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, and T.F. Jaramillo: Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  13. S. Dunn: Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27, 235 (2002).

    Article  CAS  Google Scholar 

  14. J.D. Holladay, J. Hu, D.L. King, and Y. Wang: An overview of hydrogen production technologies. Catal. Today 139, 244 (2009).

    Article  CAS  Google Scholar 

  15. J.R. Rostrup-Nielsen and T. Rostrup-Nielsen: Large-scale hydrogen production. Cattech 6, 150 (2002).

    Article  CAS  Google Scholar 

  16. K.C. Kwon, S. Choi, K. Hong, D.M. Andoshe, J.M. Suh, C. Kim, K.S. Choi, J.H. Oh, S.Y. Kim, and H.W. Jang: Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. MRS Commun. 7, 272 (2017).

    Article  CAS  Google Scholar 

  17. N.S. Lewis and D.G. Nocera: Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729 (2006).

    Article  CAS  Google Scholar 

  18. M.W. Kanan and D.G. Nocera: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072 (2008).

    Article  CAS  Google Scholar 

  19. M.A. Henderson: A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185 (2011).

    Article  CAS  Google Scholar 

  20. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J.H. Ye: Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229 (2012).

    Article  CAS  Google Scholar 

  21. H. Zhou, Y. Qu, T. Zeid, and X. Duan: Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 5, 6732 (2012).

    Article  CAS  Google Scholar 

  22. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).

    Article  CAS  Google Scholar 

  23. Y. Park, K.J. McDonald, and K.-S. Choi: Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321 (2013).

    Article  CAS  Google Scholar 

  24. Z. Zou, J. Ye, K. Sayama, and H. Arakawa: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625 (2001).

    Article  CAS  Google Scholar 

  25. B. Xie, H. Zhang, P. Cai, R. Qiu, and Y. Xiong: Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 63, 956 (2006).

    Article  CAS  Google Scholar 

  26. M.S. Prévot and K. Sivula: Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 117, 17879 (2013).

    Article  CAS  Google Scholar 

  27. P. Bornoz, F.F. Abdi, S.D. Tilley, B. Dam, R. Van De Krol, M. Graetzel, and K. Sivula: A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting. J. Phys. Chem. C 118, 16959 (2014).

    Article  CAS  Google Scholar 

  28. F.F. Abdi, L. Han, A.H.M. Smets, M. Zeman, B. Dam, and R. van de Krol: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    Article  CAS  Google Scholar 

  29. Z. Zhao, Z. Li, and Z. Zou: Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746 (2011).

    Article  CAS  Google Scholar 

  30. A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim, and S.-H.H. Wei: Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d Orbitals. Chem. Mater. 21, 547 (2009).

    Article  CAS  Google Scholar 

  31. D.K. Zhong, S. Choi, and D.R. Gamelin: Near-complete suppression of surface recombination in solar photoelectrolysis by “co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133, 18370 (2011).

    Article  CAS  Google Scholar 

  32. F.F. Abdi and R. van de Krol: Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116, 9398 (2012).

    Article  CAS  Google Scholar 

  33. S.P. Berglund, A.J.E. Rettie, S. Hoang, and C.B. Mullins: Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Phys. Chem. Chem. Phys. 14, 7065 (2012).

    Article  CAS  Google Scholar 

  34. J. Su, L. Guo, N. Bao, and C.A. Grimes: Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928 (2011).

    Article  CAS  Google Scholar 

  35. P.V. Kamat: Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834 (2007).

    Article  CAS  Google Scholar 

  36. D. Chen and J. Ye: SrSnO3 nanostructures: synthesis, characterization, and photocatalytic properties. Chem. Mater. 19, 4585 (2007).

    Article  CAS  Google Scholar 

  37. H. Zeng, W. Cai, Y. Li, J. Hu, and P. Liu: Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J. Phys. Chem. B 109, 18260 (2005).

    Article  CAS  Google Scholar 

  38. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  39. S.P. Berglund, D.W. Flaherty, N.T. Hahn, A.J. Bard, and C.B. Mullins: Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J. Phys. Chem. C 115, 3794 (2011).

    Article  CAS  Google Scholar 

  40. K.S. Choi: Shape effect and shape control of polycrystalline semiconductor electrodes for use in photoelectrochemical cells. J. Phys. Chem. Lett. 1, 2244 (2010).

    Article  CAS  Google Scholar 

  41. Y.S. Chen, J.S. Manser, and P.V. Kamat: All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J. Am. Chem. Soc. 137, 974 (2015).

    Article  CAS  Google Scholar 

  42. J.A. Seabold and K.S. Choi: Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134, 2186 (2012).

    Article  CAS  Google Scholar 

  43. S. Xiao, H. Chen, Z. Yang, X. Long, Z. Wang, Z. Zhu, Y. Qu, and S. Yang: Origin of the different photoelectrochemical performance of mesoporous BiVO4 photoanodes between the BiVO4 and the FTO side illumination. J. Phys. Chem. C 119, 23350 (2015).

    Article  CAS  Google Scholar 

  44. E. Alarcón-Lladó, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey, and J.W. Ager: BiVO4 thin film photoanodes grown by chemical vapor deposition. Phys. Chem. Chem. Phys. 16, 1651 (2014).

    Article  Google Scholar 

  45. S. Stoughton, M. Showak, Q. Mao, P. Koirala, D.A. Hillsberry, S. Sallis, L.F. Kourkoutis, K. Nguyen, L.F.J. Piper, D.A. Tenne, N.J. Podraza, D.A. Muller, C. Adamo, and D.G. Schlom: Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy. APL Mater. 1, 42112 (2013).

    Article  CAS  Google Scholar 

  46. A.J.E. Rettie, S. Mozaffari, M.D. McDaniel, K.N. Pearson, J.G. Ekerdt, J.T. Markert, and C.B. Mullins: Pulsed laser deposition of epitaxial and polycrystalline bismuth vanadate thin films. J. Phys. Chem. C 118, 26543 (2014).

    Article  CAS  Google Scholar 

  47. C.N. Van, W.S. Chang, J.W. Chen, K.A. Tsai, W.Y. Tzeng, Y.C. Lin, H.H. Kuo, H.J. Liu, K. Der Chang, W.C. Chou, C.L. Wu, Y.C. Chen, C.W. Luo, Y.J. Hsu, and Y.H. Chu: Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement. Nano Energy 15, 625 (2015).

    Article  CAS  Google Scholar 

  48. S.Y. Jeong, K.S. Choi, H.M. Shin, T.L. Kim, J. Song, S. Yoon, H.W. Jang, M.H. Yoon, C. Jeon, J. Lee, and S. Lee: Enhanced photocatalytic performance depending on morphology of bismuth vanadate thin film synthesized by pulsed laser deposition. ACS Appl. Mater. Interfaces 9, 505 (2017).

    Article  CAS  Google Scholar 

  49. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, and S.J. Henley: Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev. 33, 23 (2004).

    Article  CAS  Google Scholar 

  50. T.W. Kim and K.-S. Choi: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 (2014).

    Article  CAS  Google Scholar 

  51. A.J.E. Rettie, H.C. Lee, L.G. Marshall, J.F. Lin, C. Capan, J. Lindemuth, J.S. McCloy, J. Zhou, A.J. Bard, and C.B. Mullins: Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 135, 11389 (2013).

    Article  CAS  Google Scholar 

  52. B.K. Kang, G.S. Han, J.H. Baek, D.G. Lee, Y.H. Song, S. Bin Kwon, I.S. Cho, H.S. Jung, and D.H. Yoon: Nanodome structured BiVO4/GaOxN1−x photoanode for solar water oxidation. Adv. Mater. Interfaces 4, 1700323 (2017).

    Article  CAS  Google Scholar 

  53. N. Iqbal, I. Khan, Z.H. Yamani, and A. Qurashi: Sonochemical assisted solvothermal synthesis of gallium oxynitride nanosheets and their solar-driven photoelectrochemical water-splitting applications. Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  54. L. Xi, P.D. Tran, S.Y. Chiam, P.S. Bassi, W.F. Mak, H.K. Mulmudi, S.K. Batabyal, J. Barber, J.S.C. Loo, and L.H. Wong: Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J. Phys. Chem. C 116, 13884 (2012).

    Article  CAS  Google Scholar 

  55. P.A. Morris Hotsenpiller, J.D. Bolt, W.E. Farneth, J.B. Lowekamp, and G.S. Rohrer: Orientation dependence of photochemical reactions on TiO2 surfaces. J. Phys. Chem. B 102, 3216 (1998).

    Article  Google Scholar 

  56. M.B. Hugenschmidt, L. Gamble, and C.T. Campbell: The interaction of H2O with a TiO2(110) surface. Surf. Sci. 302, 329 (1994).

    Article  CAS  Google Scholar 

  57. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).

    Article  CAS  Google Scholar 

  58. G. Liu, C. Sun, H.G. Yang, S.C. Smith, L. Wang, G.Q. Lu, and H.-M. Cheng: Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun. 46, 755 (2010).

    Article  CAS  Google Scholar 

  59. M. Zhou, S. Zhang, Y. Sun, C. Wu, M. Wang, and Y. Xie: C-oriented and 010 facets exposed BiVO4 nanowall films: template-free fabrication and their enhanced photoelectrochemical properties. Chem. Asian J. 5, 2515 (2010).

    Article  CAS  Google Scholar 

  60. D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li, and C. Li: Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation. Chem. Eur. J. 17, 1275 (2011).

    Article  CAS  Google Scholar 

  61. H.S. Han, S. Shin, D.H. Kim, I.J. Park, J.S. Kim, P.-S. Huang, J.-K. Lee, I.S. Cho, and X. Zheng: Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 11, 1299 (2018).

    Article  CAS  Google Scholar 

  62. H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, and S.C. Warren: Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958 (2011).

    Article  CAS  Google Scholar 

  63. Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Milled, and H.N. Dinh: Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3 (2010).

    Article  CAS  Google Scholar 

  64. C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, and Y.S. Kang: (040)-Crystal facet engineering of BiVO4 plate photoanodes for solar fuel production. Adv. Energy Mater. 6, 1501754 (2016).

    Article  CAS  Google Scholar 

  65. Z. Chen, H.N. Dinh, and E. Miller: Photoelectrochemical Water Splitting. in Chim. Int. J. Chem. (Springer New York, New York, NY, 2013), p. 73.

    Google Scholar 

  66. P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, and X. Zheng: Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099 (2014).

    Article  CAS  Google Scholar 

  67. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    Article  CAS  Google Scholar 

  68. W. Zhao, Y. Wang, Y. Yang, J. Tang, and Y. Yang: Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: preparation, characterization, and photocatalytic properties. Appl. Catal. B Environ. 115, 90 (2012).

    Article  CAS  Google Scholar 

  69. R. Saito, Y. Miseki, and K. Sayama: Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem. Commun. 48, 3833 (2012).

    Article  CAS  Google Scholar 

  70. P. Ju, P. Wang, B. Li, H. Fan, S. Ai, D. Zhang, and Y. Wang: A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem. Eng. J. 236, 430 (2014).

    Article  CAS  Google Scholar 

  71. S.J. Hong, S. Lee, J.S. Jang, and J.S. Lee: Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781 (2011).

    Article  CAS  Google Scholar 

  72. M.G. Lee, D.H. Kim, W. Sohn, C.W. Moon, H. Park, S. Lee, and H.W. Jang: Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy 28, 250 (2016).

    Article  CAS  Google Scholar 

  73. J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, and P. Yang: TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2, 80 (2016).

    Article  CAS  Google Scholar 

  74. Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, and T. Kitamori: Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10, 3692 (2014).

    Article  CAS  Google Scholar 

  75. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, and J. Gong: Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 137, 8356 (2015).

    Article  CAS  Google Scholar 

  76. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, and Y. Wu: Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 110, 20211 (2006).

    Article  CAS  Google Scholar 

  77. J.G. McAlpin, Y. Surendranath, M. Dinca, T. A. Stich, S. A. Stoian, W.H. Casey, D.G. Nocera, R.D. Britt, M. Dincã, T. A. Stich, S. A. Stoian, W.H. Casey, D.G. Nocera, and R.D. Britt: EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 4, 6882 (2010).

    Article  CAS  Google Scholar 

  78. J. Wang and F.E. Osterloh: Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J. Mater. Chem. A 2, 9405 (2014).

    Article  CAS  Google Scholar 

  79. J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu, and N. Wu: Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 1 (2013).

    Google Scholar 

  80. M.G. Lee, C.W. Moon, H. Park, W. Sohn, S.B. Kang, S. Lee, K.J. Choi, and H.W. Jang: Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled au nanoparticles. Small 13, 1701644 (2017).

    Article  CAS  Google Scholar 

  81. L. Zhang, L.O. Herrmann, and J.J. Baumberg: Size dependent plasmonic effect on BiVO4 photoanodes for solar water splitting. Sci. Rep. 5, 1 (2015).

    Google Scholar 

  82. S. Linic, P. Christopher, and D.B. Ingram: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011).

    Article  CAS  Google Scholar 

  83. M. Valenti and W.A. Smith: Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A Mater. Energy Sustain. 4, 17891 (2016).

    Article  CAS  Google Scholar 

  84. F.F. Abdi, A. Dabirian, B. Dam, and R. van de Krol: Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core-shell nanoparticles. Phys. Chem. Chem. Phys. 16, 15272 (2014).

    Article  CAS  Google Scholar 

  85. N.J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander: Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913 (2011).

    Article  CAS  Google Scholar 

  86. P. Chatchai, S. ya Kishioka, Y. Murakami, A.Y. Nosaka, and Y. Nosaka: Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation. Electrochim. Acta 55, 592 (2010).

    Article  CAS  Google Scholar 

  87. H.M. Chen, C.K. Chen, C.-J. Chen, L.-C. Cheng, P.C. Wu, B.H. Cheng, Y.Z. Ho, M.L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, and D.P. Tsai: Plasmon inducing effects for enhanced photoelectrochemical water splitting: x-ray absorption approach to electronic structures. ACS Nano 6, 7362 (2012).

    Article  CAS  Google Scholar 

  88. D. Hu, P. Diao, D. Xu, and Q. Wu: Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Res. 9, 1735 (2016).

    Article  CAS  Google Scholar 

  89. M. Wang, M. Ye, J. Iocozzia, C. Lin, and Z. Lin: Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 3, 1600024 (2015).

    Article  CAS  Google Scholar 

  90. Y.C. Pu, G. Wang, K. Der Chang, Y. Ling, Y.K. Lin, B.C. Fitzmorris, C.M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.J. Hsu, and Y. Li: Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13, 3817 (2013).

    Article  CAS  Google Scholar 

  91. S. Kundu: A new route for the formation of Au nanowires and application of shape-selective Au nanoparticles in SERS studies. J. Mater. Chem. C 1, 831 (2013).

    Article  CAS  Google Scholar 

  92. C.W. Moon, S.Y. Lee, W. Sohn, D.M. Andoshe, D.H. Kim, K. Hong, and H.W. Jang: Plasmonic octahedral gold nanoparticles of maximized near electromagnetic fields for enhancing catalytic hole transfer in solar water splitting. Part. Part. Syst. Charact. 34, 1600340 (2017).

    Article  CAS  Google Scholar 

  93. Y. Liu, X. Yan, Z. Kang, Y. Li, Y. Shen, Y. Sun, L. Wang, and Y. Zhang: Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  94. S.Y. Jeong, H.-M. Shin, Y.-R. Jo, Y.J. Kim, S. Kim, W.-J. Lee, G.J. Lee, J. Song, B.J. Moon, S. Seo, H. An, S.H. Lee, Y.M. Song, B.-J. Kim, M.-H. Yoon, and S. Lee: Plasmonic silver nanoparticle-impregnated nanocomposite BiVO4 photoanode for plasmon-enhanced photocatalytic water splitting. J. Phys. Chem. C 122, 7088 (2018).

    Article  CAS  Google Scholar 

  95. J. Li, J. Zhou, H. Hao, and W. Li: Controlled synthesis of Fe2O3 modified Ag-(010)BiVO4 heterostructures with enhanced photoelectrochemical activity toward the dye degradation. Appl. Surf. Sci. 399, 1 (2017).

    Article  CAS  Google Scholar 

  96. C.K. Huang, T. Wu, C.W. Huang, C.Y. Lai, M.Y. Wu, and Y.W. Lin: Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation. Appl. Surf. Sci. 399, 10 (2017).

    Article  CAS  Google Scholar 

  97. D.K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, and D.R. Gamelin: Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759 (2011).

    Article  CAS  Google Scholar 

  98. J.A. Seabold and K.S. Choi: Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105 (2011).

    Article  CAS  Google Scholar 

  99. L. Fang, F. Nan, Y. Yang, and D. Cao: Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals. Appl. Phys. Lett. 108, 93902 (2016).

    Article  CAS  Google Scholar 

  100. E. Thimsen, F. Le Formal, M. Grätzel, and S.C. Warren: Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35 (2011).

    Article  CAS  Google Scholar 

  101. I. Thomann, B.A. Pinaud, Z. Chen, B.M. Clemens, T.F. Jaramillo, and M.L. Brongersma: Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11, 3440 (2011).

    Article  CAS  Google Scholar 

  102. K.J. McDonald and K.-S. Choi: A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 5, 8553 (2012).

    Article  CAS  Google Scholar 

  103. D.K. Zhong, J. Sun, H. Inumaru, and D.R. Gamelin: Solar water oxidation by composite catalyst/r-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086 (2009).

    Article  CAS  Google Scholar 

  104. D.K. Zhong and D.R. Gamelin: Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)r-Fe2O3 composite photoanodes oxygen evolution and resolution of a kinetic bottleneck.pdf. J. Am. Chem. Soc. 132, 4202 (2010).

    Article  CAS  Google Scholar 

  105. E.M.P. Steinmiller and K.-S. Choi: Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA 106, 20633 (2009).

    Article  CAS  Google Scholar 

  106. J.J.H. Pijpers, M.T. Winkler, Y. Surendranath, T. Buonassisi, and D.G. Nocera: Supporting information light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen evolving catalyst. Proc. Natl. Acad. Sci. USA 108, 10056 (2011).

    Article  CAS  Google Scholar 

  107. E.R. Young, R. Costi, S. Paydavosi, D.G. Nocera, and V. Bulović: Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes. Energy Environ. Sci. 4, 2058 (2011).

    Article  CAS  Google Scholar 

  108. W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, and Z. Zou: Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 4, 4046 (2011).

    Article  CAS  Google Scholar 

  109. T.H. Jeon, W. Choi, and H. Park: Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. Phys. Chem. Chem. Phys. 13, 21392 (2011).

    Article  CAS  Google Scholar 

  110. C. Sanchez, K.D. Sieber, and G.A. Somorjai: The photoelectrochemistry of niobium doped α-Fe2O3. J. Electroanal. Chem. 252, 269 (1988).

    Article  CAS  Google Scholar 

  111. F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula: Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737 (2011).

    Article  Google Scholar 

  112. M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, and K. Domen: Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137, 5053 (2015).

    Article  CAS  Google Scholar 

  113. J. Xie, C. Guo, P. Yang, X. Wang, D. Liu, and C.M. Li: Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy 31, 28 (2017).

    Article  CAS  Google Scholar 

  114. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, and J.-M. Liu: Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889 (2007).

    Article  CAS  Google Scholar 

  115. Y. Zhang, A.M. Schultz, P.A. Salvador, and G.S. Rohrer: Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J. Mater. Chem. 21, 4168 (2011).

    Article  CAS  Google Scholar 

  116. W. Zhang, M.M. Yang, X. Liang, H.W. Zheng, Y. Wang, W.X. Gao, G.L. Yuan, W.F. Zhang, X.G. Li, H.S. Luo, and R.K. Zheng: Piezostrain-enhanced photovoltaic effects in BiFeO3/La0.7Sr0.3MnO3/PMN-PT heterostructures. Nano Energy 18, 315 (2015).

    Article  CAS  Google Scholar 

  117. W. Dong, Y. Guo, B. Guo, H. Li, H. Liu, and T.W. Joel: Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer. ACS Appl. Mater. Interfaces 5, 6925 (2013).

    Article  CAS  Google Scholar 

  118. U.S. Department of Energy: DOE Technical Targets for Hydrogen Production from Electrolysis (2015). Available at: https://energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysiseere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis (accessed 27 April 2018).

  119. K. Sayama and Y. Miseki: Research and development of solar hydrogen production—toward the realization of ingenious photocatalysis-electrolysis hybrid system. Synthesiology 7, 81 (2014).

    Article  CAS  Google Scholar 

  120. T. Hisatomi and K. Domen: Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Future Material Discovery Program (NRF-2016M3D1A1027666) and the Basic Science Research Program (NRF-2017R1A2B3009135) through the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Won Jang.

Additional information

These authors contributed equally to this work.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.106|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.L., Choi, MJ. & Jang, H.W. Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies. MRS Communications 8, 809–822 (2018). https://doi.org/10.1557/mrc.2018.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.106

Navigation