Skip to main content
Log in

Additive manufacturing of metal matrix composites via nanofunctionalization

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A novel, alloy-agnostic, nanofunctionalization process has been utilized to produce metal matrix composites (MMCs) via additive manufacturing, providing new geometric freedom for MMC design. MMCs were produced with the addition of tungsten carbide nanoparticles to commercially available AISMOMg alloy powder. Tungsten carbide was chosen due to the potential for coherent crystallographic phases that were identified utilizing a lattice-matching approach to promote wetting and increase dislocation interactions. Structures were produced with evenly distributed strengthening phases leading to tensile strengths > 385 MPa and a 50% decrease in wear rate over the commercially available AISMOMg alloy at only 1 vol% loading of tungsten carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table I
Figure 4

Similar content being viewed by others

References

  1. K.U. Kainer: In Metal Matrix Composites, edited by K.U. Kainer (Wiley-VCH Verlag GmbH & Co. KGaA, Darmstadt, Germany, 2006), pp. 1–54.

  2. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: Particulate reinforced metal matrix composites - a review. J. Mater. Sci. 26(5), 1137–1156 (1991).

    Article  CAS  Google Scholar 

  3. G. Gonzalez-Doncel and R. Fernandez: Comments on “creep behavior of in situ TiCP/2618 aluminum matrix composite”. Mater. Sci. Eng. A 527 (13-14), 3288–3292 (2010).

    Article  Google Scholar 

  4. C.S. Rameshand A. Ahamed: Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites. Wear 271 (9-10), 1928–1939 (2011).

    Article  Google Scholar 

  5. N. Tomac, K. Tannessen, and F.O. Rasch: Machinability of particulate aluminium matrix composites. CIRP Ann. 41(1), 55–58 (1992).

    Article  Google Scholar 

  6. D. Dai and D. Gu: Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AISi10Mg powder. Int. J. Mach. Tools Manuf. 88, 95–107 (2015).

    Article  Google Scholar 

  7. A.T. Thomas, R. Parameshwaran, A. Muthukrishnan, and M.A. Kumaran: Development of feeding and stirring mechanisms for stir casting of aluminium matrix composites. Proc. Mater. Sci. 5, 1182–1191 (2014).

    Article  CAS  Google Scholar 

  8. H. Ye, X.Y. Liu, and H. Hong: Fabrication of metal matrix composites by metal injection molding -a review. J. Mater. Process. Technol. 200(1–3), 12–24 (2008).

    Article  CAS  Google Scholar 

  9. T.M.T. Gofrey, P.S. Goodwin, and C.M. Ward-Close: Titanium particulate metal matrix composites - reinforcement, production methods, and mechanical properties. Adv. Eng. Mater. 2(3), 85–91 (2000).

    Article  Google Scholar 

  10. J. Hashim, L. Looney, and M.S.J. Hashmi: Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92–93, 1–7 (1999).

    Article  Google Scholar 

  11. S. Das, D.L. Bourell, and S.S. Babu: Metallic materials for 3D printing. MRS Bull. 41(10), 729–741 (2016).

    Article  Google Scholar 

  12. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T. M. Pollock: 3D printing of high-strength aluminium alloys. Nature 549 (7672), 365–369 (2017).

    Article  CAS  Google Scholar 

  13. G. Han, W. Zhang, G. Zhang, Z. Feng, and Y. Wang: High-temperature mechanical properties and fracture mechanisms of Al-Si piston alloy reinforced with in situ TiB2 particles. Mater. Sci. Eng. A 633, 161–168 (2015).

    Article  CAS  Google Scholar 

  14. P. Xiao, Y. Gao, C. Yang, Z. Liu, Y. Li, and F. Xu: Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles. Mater. Sci. Eng. A 710, 251–259 (2017).

    Article  Google Scholar 

  15. D. Hull and D.J. Bacon: Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, Oxford, England, 2001), pp. 225, 356, 200–300.

    Google Scholar 

  16. C.W. Nan and D.R. Clarke: The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater. 44(9), 3801–3811 (1996).

    Article  CAS  Google Scholar 

  17. V. Bharath, M. Nagaral, V. Auradi, and S.A. Kori: Preparation of 6061AI-AI2O3 MMC’s by stir casting and evaluation of mechanical and wear properties. Proc. Mater. Sci. 6(lcmpc), 1658–1667 (2014).

    Article  CAS  Google Scholar 

  18. D.M. Stefanescu: Science and Engineering of Casting Solidification (Springer International Publishing, Cham, Switzerland, 2015), pp. 157–194.

    Book  Google Scholar 

  19. R. Acharya, J.A. Sharon, and A. Staroselsky: Prediction of microstructure in laser powder bed fusion process. Acta Mater. 124, 360–371 (2017).

    Article  CAS  Google Scholar 

  20. W. Kurz and D.J. Fisher: Fundamentals of Solidification (Trans Tech Publications Ltd., Aedermannsdorf, Switzerland, 1998).

    Book  Google Scholar 

  21. U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, and J. M. Schoenung: On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater. Des. 113, 331–340 (2017).

    Article  CAS  Google Scholar 

  22. Y. Ozaki and R.H. Zee: Investigation of thermal and hydrogen effects on emissivity of refractory metals and carbides. Mater. Sci. Eng. A 202 (1–2), 134–141 (1995).

    Article  Google Scholar 

  23. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, and W.E. King: Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater. 114, 33–42 (2016).

    Article  CAS  Google Scholar 

  24. CL 30 L/CL 31 AL AIuminum Alloys (Concapt Laser, Hoffmann Innovation Group, 2012), pp. 1–3.

    Google Scholar 

  25. I. Rosenthal, A. Stern, and N. Frage: Microstructure and mechanical properties of AISMOMg parts produced by the laser beam additive manufacturing (AM) technology. Metallogr. Microstruct. Anal. 3(6), 448–453 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by HRL Laboratories, LLC, and thank Dana Martin for her artistic contribution to the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Martin.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.95

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, J.H., Yahata, B.D., Clough, E.C. et al. Additive manufacturing of metal matrix composites via nanofunctionalization. MRS Communications 8, 297–302 (2018). https://doi.org/10.1557/mrc.2018.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.95

Navigation