Skip to main content

Advertisement

Log in

Toward bioimplantable and biocompatible flexible energy harvesters using piezoelectric ceramic materials

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This article presents a comprehensive overview of currently available research on bioimplantable energy harvesters, with a specific focus on their fabrication and issue of biocompatibility. Both the achievements and limitations of the field are pointed out from the standpoint of materials science and engineering as directions for future research. Particular attention is paid to the controversy over the use of lead-based or lead-free piezoelectric ceramics in biomedical applications, which is closely related to different temporalities of research on biological conditions. This report is intended to serve as a reference guide for developing the next generation of piezoelectric biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. S.J. Connolly and S. Yusuf: Evaluation of the implantable cardioverter defibrillator in survivors of cardiac arrest: the need for randomized trials. Am. J. Cardiol. 69, 959 (1992).

    Article  CAS  Google Scholar 

  2. E. Meng and T. Hoang: MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv. Drug Deliv. Rev. 64, 1628 (2012).

    Article  CAS  Google Scholar 

  3. M.A. Miller, P. Neuzil, S.R. Dukkipati, and V.Y. Reddy: Leadless cardiac pacemakers. J. Am. Coll. Cardiol. 66, 1179 (2015).

    Article  Google Scholar 

  4. K. Bazaka and M. Jacob: Implantable devices: issues and challenges. Electronics 2, 1 (2012).

    Article  CAS  Google Scholar 

  5. Z.L. Wang, X. Wang, J. Song, J. Liu, and Y. Gao: Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Comput. 7, 49 (2008).

    Article  Google Scholar 

  6. Y. Qi and M.C. McAlpine: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275 (2010).

    Article  CAS  Google Scholar 

  7. T. Starner: Human-powered wearable computing. IBM Syst. J. 35, 618 (1996).

    Article  Google Scholar 

  8. S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, V. Sundararajan, and P.K. Wright: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4, 28 (2005).

    Article  Google Scholar 

  9. Z.L. Wang: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).

    Article  CAS  Google Scholar 

  10. S.A. Han, T.-H. Kim, S.K. Kim, K.H. Lee, H.-J. Park, J.-H. Lee, and S.-W. Kim: Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 30, 1800342 (2018).

    Article  CAS  Google Scholar 

  11. S.S. Won, H. Seo, M. Kawahara, S. Glinsek, J. Lee, Y. Kim, C.K. Jeong, A.I. Kingon, and S.-H. Kim: Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy 55, 182 (2019).

    Article  CAS  Google Scholar 

  12. J. Han, K.-I. Park, and C. Jeong: Dual-structured flexible piezoelectric film energy harvesters for effectively integrated performance. Sensors 19, 1444 (2019).

    Article  CAS  Google Scholar 

  13. B.-Y. Lee, D.H. Kim, J. Park, K.-I. Park, K.J. Lee, and C.K. Jeong: Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 20, 758 (2019).

    Article  CAS  Google Scholar 

  14. A. Ahmed, I. Hassan, M.F. El-Kady, A. Radhi, C.K. Jeong, P.R. Selvaganapathy, J. Zu, S. Ren, Q. Wang, and R.B. Kaner: Integrated triboelectric nanogenerators in the era of the internet of things. Adv. Sci. 6, 1802230 (2019).

    Article  CAS  Google Scholar 

  15. D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han, C.K. Jeong, H. Park, J.G. Park, B. Joung, and K.J. Lee: Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017).

    Article  CAS  Google Scholar 

  16. U. Khan, R. Hinchet, H. Ryu, and S.-W. Kim: Research update: nanogenerators for self-powered autonomous wireless sensors. APL Mater. 5, 073803 (2017).

    Article  CAS  Google Scholar 

  17. H.G. Yeo, J. Jung, M. Sim, J.E. Jang, and H. Choi: Integrated piezoelectric aln thin film with SU-8/PDMS supporting layer for flexible sensor array. Sensors 20, 315 (2020).

    Article  CAS  Google Scholar 

  18. Q. Liu, X.-X. Wang, W.-Z. Song, H.-J. Qiu, J. Zhang, Z. Fan, M. Yu, and Y.-Z. Long: Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl. Mater. Interfaces 12, 8288 (2020).

    Article  CAS  Google Scholar 

  19. S. Niu, X. Wang, F. Yi, Y.S. Zhou, and Z.L. Wang: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015).

    Article  CAS  Google Scholar 

  20. J. Wang, S. Li, F. Yi, Y. Zi, J. Lin, X. Wang, Y. Xu, and Z.L. Wang: Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 7, 12744 (2016).

    Article  CAS  Google Scholar 

  21. P.-K. Yang, L. Lin, F. Yi, X. Li, K.C. Pradel, Y. Zi, C.-I. Wu, J.-H. He, Y. Zhang, and Z.L. Wang: A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 27, 3817 (2015).

    Article  CAS  Google Scholar 

  22. R. Yang, Y. Qin, C. Li, G. Zhu, and Z.L. Wang: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201 (2009).

    Article  CAS  Google Scholar 

  23. H. Zhang, X.-S. Zhang, X. Cheng, Y. Liu, M. Han, X. Xue, S. Wang, F. Yang, S.A.S.H. Zhang, and Z. Xu: A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy 12, 296 (2015).

    Article  CAS  Google Scholar 

  24. Z. Li, G. Zhu, R. Yang, A.C. Wang, and Z.L. Wang: Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534 (2010).

    Article  CAS  Google Scholar 

  25. M. Yuan, L. Cheng, Q. Xu, W. Wu, S. Bai, L. Gu, Z. Wang, J. Lu, H. Li, Y. Qin, T. Jing, and Z.L. Wang: Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for in-vivo applications. Adv. Mater. 26, 7432 (2014).

    Article  CAS  Google Scholar 

  26. C. Dagdeviren, B.D. Yang, Y. Su, P.L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, B. Lu, R. Poston, Z. Khalpey, R. Ghaffari, Y. Huang, M.J. Slepian, and J.A. Rogers: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 111, 1927 (2014).

  27. B. Lu, Y. Chen, D. Ou, H. Chen, L. Diao, W. Zhang, J. Zheng, W. Ma, L. Sun, and X. Feng: Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy. Sci. Rep. 5, 16065 (2015).

    Article  CAS  Google Scholar 

  28. L. Cheng, M. Yuan, L. Gu, Z. Wang, Y. Qin, T. Jing, and Z.L. Wang: Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15, 598 (2015).

    Article  CAS  Google Scholar 

  29. X. Cheng, X. Xue, Y. Ma, M. Han, W. Zhang, Z. Xu, H. Zhang, and H. Zhang: Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: simulated, in vitro and in vivo studies. Nano Energy 22, 453 (2016).

    Article  CAS  Google Scholar 

  30. Y. Yu, H. Sun, H. Orbay, F. Chen, C.G. England, W. Cai, and X. Wang: Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy 27, 275 (2016).

    Article  CAS  Google Scholar 

  31. J. Zhou, N.S. Xu, and Z.L. Wang: Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18, 2432 (2006).

    Article  CAS  Google Scholar 

  32. Z. Li, R. Yang, M. Yu, F. Bai, C. Li, and Z.L. Wang: Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112, 20114 (2008).

    Article  CAS  Google Scholar 

  33. K. Choi, W. Choi, C. Yu, and Y.T. Park: Enhanced piezoelectric behavior of PVDF nanocomposite by AC dielectrophoresis alignment of ZnO nanowires. J. Nanomater. 2017, 1 (2017).

    Article  CAS  Google Scholar 

  34. L. Natta, V.M. Mastronardi, F. Guido, L. Algieri, S. Puce, F. Pisano, F. Rizzi, R. Pulli, A. Qualtieri, and M. De Vittorio: Soft and flexible piezoelectric smart patch for vascular graft monitoring based on aluminum nitride thin film. Sci. Rep. 9, 8392 (2019).

    Article  CAS  Google Scholar 

  35. L. Lamanna, F. Rizzi, F. Guido, L. Algieri, S. Marras, V.M. Mastronardi, A. Qualtieri, and M. De Vittorio: Flexible and transparent aluminum-nitride-based surface-acoustic-wave device on polymeric polyethylene naphthalate. Adv. Electron. Mater. 5, 1900095 (2019).

    Article  CAS  Google Scholar 

  36. L. Algieri, M.T. Todaro, F. Guido, V. Mastronardi, D. Desmaële, A. Qualtieri, C. Giannini, T. Sibillano, and M. De Vittorio: Flexible piezoelectric energy-harvesting exploiting biocompatible AlN thin films grown onto spin-coated polyimide layers. ACS Appl. Energy Mater. 1, 5203 (2018).

    CAS  Google Scholar 

  37. C. Abels, V. Mastronardi, F. Guido, T. Dattoma, A. Qualtieri, W. Megill, M. De Vittorio, and F. Rizzi: Nitride-based materials for flexible mems tactile and flow sensors in robotics. Sensors 17, 1080 (2017).

    Article  Google Scholar 

  38. C.R. Bowen, H.A. Kim, P.M. Weaver, and S. Dunn: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2014).

    Article  CAS  Google Scholar 

  39. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J.L. Kang, Z.L. Wang, and K.J. Lee: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939 (2010).

    Article  CAS  Google Scholar 

  40. X. Chen, S. Xu, N. Yao, and Y. Shi: 1.6 V Nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133 (2010).

    Article  CAS  Google Scholar 

  41. Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, and M.C. McAlpine: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331 (2011).

    Article  CAS  Google Scholar 

  42. G.-T. Hwang, H. Park, J.-H. Lee, S. Oh, K.-I. Park, M. Byun, H. Park, G. Ahn, C.K. Jeong, K. No, H. Kwon, S.-G. Lee, B. Joung, and K.J. Lee: Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26, 4880 (2014).

    Article  CAS  Google Scholar 

  43. G.-T. Hwang, Y. Kim, J.-H. Lee, S. Oh, C.K. Jeong, D.Y. Park, J. Ryu, H. Kwon, S.-G. Lee, B. Joung, D. Kim, and K.J. Lee: Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 8, 2677 (2015).

    Article  CAS  Google Scholar 

  44. D.H. Kim, H.J. Shin, H. Lee, C.K. Jeong, H. Park, G.-T. Hwang, H.-Y. Lee, D.J. Joe, J.H. Han, S.H. Lee, J. Kim, B. Joung, and K.J. Lee: In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater. 27, 1700341 (2017).

    Article  CAS  Google Scholar 

  45. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, and W. Jo: Lead-free piezoceramics–where to move on? J. Materiomics 2, 1 (2016).

    Article  Google Scholar 

  46. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  CAS  Google Scholar 

  47. T. Inaoka, H. Shintaku, T. Nakagawa, S. Kawano, H. Ogita, T. Sakamoto, S. Hamanishi, H. Wada, and J. Ito: Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc. Natl. Acad. Sci. USA 108, 18390 (2011).

  48. Y.R. Wang, J.M. Zheng, G.Y. Ren, P.H. Zhang, and C. Xu: A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struct. 20, 045009 (2011).

    Article  CAS  Google Scholar 

  49. C.K. Jeong, D.Y. Hyeon, G.-T. Hwang, G.-J. Lee, M.-K. Lee, J.-J. Park, and K.-I. Park: Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powered sensors. J. Mater. Chem. A 7, 25481 (2019).

    Article  CAS  Google Scholar 

  50. Y. Zhang, W. Zhu, C.K. Jeong, H. Sun, G. Yang, W. Chen, and Q. Wang: A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 7, 32502 (2017).

    Article  CAS  Google Scholar 

  51. G. Laroche, Y. Marois, R. Guidoin, M.W. King, L. Martin, T. How, and Y. Douville: Polyvinylidene fluoride (PVDF) as a biomaterial: from polymeric raw material to monofilament vascular suture. J. Biomed. Mater. Res. 29, 1525 (1995).

    Article  CAS  Google Scholar 

  52. Q.M. Zhang: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101 (1998).

    Article  CAS  Google Scholar 

  53. H. Xu, Z.-Y. Cheng, D. Olson, T. Mai, Q.M. Zhang, and G. Kavarnos: Ferroelectric and electromechanical properties of poly(vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360 (2001).

    Article  CAS  Google Scholar 

  54. Y. Bar-Cohen and Q. Zhang: Electroactive polymer actuators and sensors. MRS Bull. 33, 173 (2008).

    Article  CAS  Google Scholar 

  55. H. Kim, L.C.D. Manriquez, M.T. Islam, L.A. Chavez, J.E. Regis, M.A. Ahsan, J.C. Noveron, T.-L.B. Tseng, and Y. Lin: 3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique. MRS Commun. 9, 1115 (2019).

    Article  CAS  Google Scholar 

  56. J. Li, L. Kang, Y. Yu, Y. Long, J.J. Jeffery, W. Cai, and X. Wang: Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy 51, 728 (2018).

    Article  CAS  Google Scholar 

  57. I. Katsouras, K. Asadi, M. Li, T.B. van Driel, K.S. Kjær, D. Zhao, T. Lenz, Y. Gu, P.W.M. Blom, D. Damjanovic, M.M. Nielsen, and D.M. de Leeuw: The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78 (2016).

    Article  CAS  Google Scholar 

  58. Y. Liu, H. Aziguli, B. Zhang, W. Xu, W. Lu, J. Bernholc, and Q. Wang: Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562, 96 (2018).

    Article  CAS  Google Scholar 

  59. Y. Liu, B. Zhang, A. Haibibu, W. Xu, Z. Han, W. Lu, J. Bernholc, and Q. Wang: Insights into the morphotropic phase boundary in ferroelectric polymers from the molecular perspective. J. Phys. Chem. C 123, 8727 (2019).

    Article  CAS  Google Scholar 

  60. Y. Liu, Z. Han, W. Xu, A. Haibibu, and Q. Wang: Composition-dependent dielectric properties of poly(vinylidene fluoride-trifluoroethylene)s near the morphotropic phase boundary. Macromolecules 52, 6741 (2019).

    Article  CAS  Google Scholar 

  61. Y. Liu and Q. Wang: Ferroelectric polymers exhibiting negative longitudinal piezoelectric coefficient: progress and prospects. Adv. Sci. 7, 1902468 (2020).

    Article  CAS  Google Scholar 

  62. C. Qiu, B. Wang, N. Zhang, S. Zhang, J. Liu, D. Walker, Y. Wang, H. Tian, T.R. Shrout, Z. Xu, L.-Q. Chen, and F. Li: Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 577, 350 (2020).

    Article  CAS  Google Scholar 

  63. H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, and C.-W. Nan: Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578 (2019).

    Article  CAS  Google Scholar 

  64. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.-Q. Chen, T.R. Shrout, and S. Zhang: Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349 (2018).

    Article  CAS  Google Scholar 

  65. A. Datta, Y.S. Choi, E. Chalmers, C. Ou, and S. Kar-Narayan: Piezoelectric Nylon-11 nanowire arrays grown by template wetting for vibrational energy harvesting applications. Adv. Funct. Mater. 27, 1604262 (2017).

    Article  CAS  Google Scholar 

  66. I. Chae, C.K. Jeong, Z. Ounaies, and S. H. Kim: Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio. Mater. 1, 936 (2018).

    Article  CAS  Google Scholar 

  67. Y. Zhang, C.K. Jeong, J. Wang, H. Sun, F. Li, G. Zhang, L.-Q. Chen, S. Zhang, W. Chen, and Q. Wang: Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy 50, 35 (2018).

    Article  CAS  Google Scholar 

  68. Y. Zhang, C.K. Jeong, T. Yang, H. Sun, L.-Q. Chen, S. Zhang, W. Chen, and Q. Wang: Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J. Mater. Chem. A 6, 14546 (2018).

    Article  CAS  Google Scholar 

  69. C. Baek, J.E. Wang, S. Ryu, J.-H. Kim, C.K. Jeong, K.-I. Park, and D.K. Kim: Facile hydrothermal synthesis of BaZrxTi1−x O3 nanoparticles and their application to a lead-free nanocomposite generator. RSC Adv. 7, 2851 (2017).

    Article  CAS  Google Scholar 

  70. S.S. Won, M. Kawahara, C.W. Ahn, J. Lee, J. Lee, C.K. Jeong, A.I. Kingon, and S. Kim: Lead-free Bi0.5(Na0.78K0.22)TiO3 nanoparticle filler–elastomeric composite films for paper-based flexible power generators. Adv. Electron. Mater. 6, 1900950 (2020).

    Article  CAS  Google Scholar 

  71. S. Park, M. Peddigari, J.H. Kim, E. Kim, G.-T. Hwang, J.-W. Kim, C.-W. Ahn, J.-J. Choi, B.-D. Hahn, J.-H. Choi, W.-H. Yoon, D.-S. Park, K.-I. Park, C.K. Jeong, J.W. Lee, and Y. Min: Selective phase control of dopant-free potassium sodium niobate perovskites in solution. Inorg. Chem. 59, 3042 (2020).

    Article  CAS  Google Scholar 

  72. H. Wu, Y. Zhang, J. Wu, J. Wang, and S.J. Pennycook: Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials. Adv. Funct. Mater. 29, 1902911 (2019).

    Article  CAS  Google Scholar 

  73. C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.-T. Hwang, B. Joung, S.-G. Kim, H.J. Shin, I.-S. Kang, J. Ryu, and K.J. Lee: Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5, 074102 (2017).

    Article  CAS  Google Scholar 

  74. T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, D.C. Sinclair, K.B. Mustapha, A. Acquaye, and D. Wang: Are lead-free piezoelectrics more environmentally friendly? MRS Commun. 7, 1 (2017).

    Article  CAS  Google Scholar 

  75. K.-I. Park, J.H. Son, G.-T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, and K.J. Lee: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514 (2014).

    Article  CAS  Google Scholar 

  76. T.R. Shrout and S. Zhang: Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceramics 19, 113 (2007).

    Article  CAS  Google Scholar 

  77. M.D. Maeder, D. Damjanovic, and N. Setter: Lead free piezoelectric materials. J. Electroceramics 13, 385 (2004).

    Article  CAS  Google Scholar 

  78. J. Wu, D. Xiao, and J. Zhu: Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).

    Article  CAS  Google Scholar 

  79. T. Takenaka, H. Nagata, Y. Hiruma, Y. Yoshii, and K. Matumoto: Lead-free piezoelectric ceramics based on perovskite structures. J. Electroceramics 19, 259 (2007).

    Article  CAS  Google Scholar 

  80. C. Yang and Z. Suo: Hydrogel ionotronics. Nat. Rev. Mater. 3, 125 (2018).

    Article  CAS  Google Scholar 

  81. H.G. Yeo, X. Ma, C. Rahn, and S. Trolier-McKinstry: Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils. Adv. Funct. Mater. 26, 5940 (2016).

    Article  CAS  Google Scholar 

  82. S.S. Won, J. Lee, V. Venugopal, D.-J. Kim, J. Lee, I.W. Kim, A.I. Kingon, and S.-H. Kim: Lead-free Mn-doped (K0.5, Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl. Phys. Lett. 108, 232908 (2016).

    Article  CAS  Google Scholar 

  83. H.G. Yeo, T. Xue, S. Roundy, X. Ma, C. Rahn, and S. Trolier-McKinstry: Strongly (001) oriented bimorph PZT film on metal foils grown by RF-sputtering for wrist-worn piezoelectric energy harvesters. Adv. Funct. Mater. 28, 1801327 (2018).

    Article  CAS  Google Scholar 

  84. Y.J. Ko, D.Y. Kim, S.S. Won, C.W. Ahn, I.W. Kim, A.I. Kingon, S.-H. Kim, J.-H. Ko, and J.H. Jung: Flexible Pb(Zr0.52Ti0.48)O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Appl. Mater. Interfaces 8, 6504 (2016).

    Article  CAS  Google Scholar 

  85. H. Zhang and M. Chiao: Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J. Med. Biol. Eng. 35, 143 (2015).

    Article  Google Scholar 

  86. I. Wong and C.-M. Ho: Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluidics 7, 291 (2009).

    Article  CAS  Google Scholar 

  87. H. Makamba, J.H. Kim, K. Lim, N. Park, and J.H. Hahn: Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24, 3607 (2003).

    Article  CAS  Google Scholar 

  88. X. Yao, J. Liu, C. Yang, X. Yang, J. Wei, Y. Xia, X. Gong, and Z. Suo: Hydrogel paint. Adv. Mater. 31, 1903062 (2019).

    Article  CAS  Google Scholar 

  89. L. Brassart, Q. Liu, and Z. Suo: Mixing by shear, dilation, swap, and diffusion. J. Mech. Phys. Solids 112, 253 (2018).

    Article  CAS  Google Scholar 

  90. G.-J. Lee, M.-K. Lee, J.-J. Park, D.Y. Hyeon, C.K. Jeong, and K.-I. Park: Piezoelectric energy harvesting from two-dimensional boron nitride nanoflakes. ACS Appl. Mater. Interfaces 11, 37920 (2019).

    Article  CAS  Google Scholar 

  91. J. Seo, Y. Kim, W.Y. Park, J.Y. Son, C.K. Jeong, H. Kim, and W.-H. Kim: Out-of-plane piezoresponse of monolayer MoS2 on plastic substrates enabled by highly uniform and layer-controllable CVD. Appl. Surf. Sci. 487, 1356 (2019).

    Article  CAS  Google Scholar 

  92. Y. Zhang, H. Sun, and C.K. Jeong: Biomimetic porifera skeletal structure of lead-free piezocomposite energy harvesters. ACS Appl. Mater. Interfaces 10, 35539 (2018).

    Article  CAS  Google Scholar 

  93. S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si, J.K. Kim, and B.B. Khatua: A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater. Today Energy 9, 114 (2018).

    Article  Google Scholar 

  94. S.K. Ghosh, and D. Mandal: Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Appl. Phys. Lett 110, 123701 (2017).

    Article  CAS  Google Scholar 

  95. S. Maiti, S. Kumar Karan, J. Lee, A. Kumar Mishra, B. Bhusan Khatua, and J. Kon Kim: Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42, 282 (2017).

    Article  CAS  Google Scholar 

  96. S.K. Ghosh and D. Mandal: Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder. Nano Energy 28, 356 (2016).

    Article  CAS  Google Scholar 

  97. V. Sencadas, C. Garvey, S. Mudie, J.J.K. Kirkensgaard, G. Gouadec, and S. Hauser: Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy 66, 104106 (2019).

    Article  CAS  Google Scholar 

  98. A. Maitra, S.K. Karan, S. Paria, A.K. Das, R. Bera, L. Halder, S.K. Si, A. Bera, and B.B. Khatua: Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy 40, 633 (2017).

    Article  CAS  Google Scholar 

  99. M.M. Alam and D. Mandal: Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces 8, 1555 (2016).

    Article  CAS  Google Scholar 

  100. S.K. Karan, S. Maiti, O. Kwon, S. Paria, A. Maitra, S.K. Si, Y. Kim, J.K. Kim, and B.B. Khatua: Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy 49, 655 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) (grant no. NRF-2019R1C1C1002571). This article was also assisted by the Jeonbuk National University (JBNU) Writing Center.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, C.K. Toward bioimplantable and biocompatible flexible energy harvesters using piezoelectric ceramic materials. MRS Communications 10, 365–378 (2020). https://doi.org/10.1557/mrc.2020.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.48

Navigation