Skip to main content

Advertisement

Log in

Surface engineering for phase change heat transfer: A review

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Owing to advances in micro- and nanofabrication methods over the last two decades, the degree of sophistication with which solid surfaces can be engineered today has caused a resurgence of interest in the topic of engineering surfaces for phase change heat transfer.

This review aims at bridging the gap between the material sciences and heat transfer communities. It makes the argument that optimum surfaces need to address the specificities of phase change heat transfer in the way that a key matches its lock. This calls for the design and fabrication of adaptive surfaces with multiscale textures and non-uniform wettability. Among numerous challenges to meet the rising global energy demand in a sustainable manner, improving phase change heat transfer has been at the forefront of engineering research for decades. The high heat transfer rates associated with phase change heat transfer are essential to energy and industry applications; but phase change is also inherently associated with poor thermodynamic efficiency at low heat flux, and violent instabilities at high heat flux. Engineers have tried since the 1930s to fabricate solid surfaces that improve phase change heat transfer. The development of micro and nanotechnologies has made feasible the high-resolution control of surface texture and chemistry over length scales ranging from molecular levels to centimeters. This paper reviews the fabrication techniques available for metallic and silicon-based surfaces, considering sintered and polymeric coatings. The influence of such surfaces in multiphase processes of high practical interest, e.g., boiling, condensation, freezing, and the associated physical phenomena are reviewed. The case is made that while engineers are in principle able to manufacture surfaces with optimum nucleation or thermofluid transport characteristics, more theoretical and experimental efforts are needed to guide the design and cost-effective fabrication of surfaces that not only satisfy the existing technological needs, but also catalyze new discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table 1
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Table 2
Figure 11
Table 3
Figure 12
Figure 13
Figure 14
Table 4
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  1. Manglik R.M. and Jog M.A.: Molecular-to-large-scale heat transfer with multiphase interfaces: Current status and new directions. J. Heat Transfer 131, 121001 (2009).

    Article  CAS  Google Scholar 

  2. Incropera F.P. and DeWitt D.P.: Fundamentals of Heat and Mass Transfer (John Wiley & Sons Inc., Hoboken, NJ, 1995).

    Google Scholar 

  3. Page K., Wilson M., Mordan N., Chrzanowski W., Knowles J., and Parkin I.P.: Study of the adhesion of Staphylococcus aureus to coated glass substrates. J. Mater. Sci. 46, 6355–6363 (2011).

    Article  CAS  Google Scholar 

  4. Moran M., Shapiro H., Munson B.R., and DeWitt D.P.: Introduction to Thermal Systems Engineering (John Wiley and Sons, Danvers, MA, 2003).

    Google Scholar 

  5. Collier J.G.: Convective Boiling and Condensation (McGraw-Hill, New York, 1972).

    Google Scholar 

  6. Bar-Cohen A., Arik M., and Ohadi M.: Direct liquid cooling of high flux micro and nano electronic components. Proc. IEEE 94, 1549–1570 (2006).

    Article  CAS  Google Scholar 

  7. McHale J.P. and Garimella S.V.: Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int. J. Multiphase Flow 36, 249–260 (2010).

    Article  CAS  Google Scholar 

  8. Han C.Y. and Griffith P.: The Mechanism of Heat Transfer in Nucleate Pool Boiling (MIT, Cambridge, MA, 1962).

    Google Scholar 

  9. Demiray F. and Kim J.: Microscale heat transfer measurements during pool boiling of FC-72: Effect of subcooling. Int. J. Heat Mass Transfer 47, 3257–3268 (2004).

    Article  CAS  Google Scholar 

  10. Jiang Y., Osada H., Inagaki M., and Horinouchi N.: Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int. J. Heat Mass Transfer 56, 640–652 (2013).

    Article  Google Scholar 

  11. Golobic I., Petkovsek J., and Kenning D.B.R.: Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography. Int. J. Heat Mass Transfer 55, 1385–1402 (2012).

    Article  CAS  Google Scholar 

  12. Son G. and Dhir V.K.: Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes. Int. J. Heat Mass Transfer 51, 2566–2582 (2008).

    Article  CAS  Google Scholar 

  13. Dhir V., Abarajith H.S., and Li D.: Bubble dynamics and heat transfer during pool and flow boiling. Heat Transfer Eng. 28, 608–624 (2007).

    Article  CAS  Google Scholar 

  14. Boreyko J. and Chen C-H.: Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).

    Article  CAS  Google Scholar 

  15. Chen C-H., Cai Q., Tsai C., Chen C-L., Xiong G., Yu Y., and Ren Z.: Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 90, 173108 (2007).

    Article  CAS  Google Scholar 

  16. Anand S., Paxson A., Dhiman R., Smith J.D., and Varanasi K.K.: Enhanced condensation on lubricant-impregnated nanotextured surfaces. Langmuir 6, 10122–10129 (2012).

    CAS  Google Scholar 

  17. Rykaczewski K., Scott J.H.J., and Fedorov A.G.: Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces. Appl. Phys. Lett. 98, 093106 (2011).

    Article  CAS  Google Scholar 

  18. Lee K-S., Jhee S., and Yang D-K.: Prediction of the frost formation on a cold flat surface. Int. J. Heat Mass Transfer 46, 3789–3796 (2003).

    Article  CAS  Google Scholar 

  19. Hayashi Y., Aoki A., Adachi S., and Hori K.: Study of frost properties correlating with frost formation types. J. Heat Transfer 99, 239–245 (1977).

    Google Scholar 

  20. Mishchenko L., Hatton B., Bahadur V., Taylor J., Krupenkin T., and Aizenberg J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010).

    Article  CAS  Google Scholar 

  21. Patankar N.A.: Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6, 1613–1620 (2010).

    Article  CAS  Google Scholar 

  22. Ahn H., Lee C., Kim H., Jo H., Kang S., Kim J., Shin J., and Kim M.H.: Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface. Nucl. Eng. Des. 240, 3350–3360 (2010).

    Article  CAS  Google Scholar 

  23. Kim Y., Kim S., Suh K., Rempe J., Cheung F.B., and Kim S.B.: Internal vessel cooling feasibility attributed by critical heat flux in inclined rectangular gap. Nucl. Technol. 154, 13–40 (2006).

    Article  CAS  Google Scholar 

  24. Leung J.C.M., Gallivan K., Henry R.E., and Bankoff S.G.: Critical heat flux predictions during blowdown transients. Int. J. Multiphase Flow 7, 677–701 (1981).

    Article  CAS  Google Scholar 

  25. Kurokawa K.: The Fukushima Nuclear Accident Independent Investigation Commission (The National Diet of Japan, Japan, 2012).

    Google Scholar 

  26. Kim J.: U Maryland, Mechanical Engineering, personal communication with D.A. on the use of dimensionless analysis in pool boiling, May 2013.

    Google Scholar 

  27. Schrage R.W.: A Theoretical Study of Interphase Mass Transfer (Columbia University Press, New York, NY, 1953).

    Book  Google Scholar 

  28. Corman J.C. and McLaughlin M.H.: Boiling augmentation with structured surfaces. ASHRAE Trans. 82, 906–918 (1976).

    Google Scholar 

  29. Mankovskij O., Ioffe O., Fibgant L.G., and Tolczinskij A.R.: About boiling mechanism on flooded surface with capillary-porous coating. Ing. Fiz. J. 30, 975–982 (1976).

    Google Scholar 

  30. Ayub Z.H. and Bergles A.E.: Pool boiling from GEWA surfaces in water and R-113. Wärme-und Stoffübertragung 21, 209–219 (1987).

    Article  CAS  Google Scholar 

  31. Arai N.: Heat transfer tubes enhancing boiling and condensation in heat exchangers of a refrigerating machine. ASHRAE Trans. 83, 58–70 (1977).

    Google Scholar 

  32. Nakayama W., Daikoku T., Kuwahara H., and Nakajima T.: Dynamic model of enhanced boiling heat transfer on porous surfaces. J. Heat Transfer 102, 451–456 (1980).

    Article  CAS  Google Scholar 

  33. Takata Y., Hidaka S., Masuda M., and Ito T.: Pool boiling on a superhydrophilic surface. Int. J. Energy Res. 27, 111–119 (2003).

    Article  CAS  Google Scholar 

  34. Li C. and Peterson G.P.: Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. J. Heat Transfer-Trans. ASME 129, 1465–1475 (2007).

    Article  CAS  Google Scholar 

  35. Li C., Wang Z., Wang P., Peles Y., Koratkar N., and Peterson G.P.: Nanostructured copper interfaces for enhanced boiling. Small 4, 1084–1088 (2008).

    Article  CAS  Google Scholar 

  36. Weibel J., Garimella S.V., and North M.T.: Characterization of evaporation and boiling from sintered powder wicks fed by capillary action. Int. J. Heat Mass Transfer 53, 4204–4215 (2010).

    Article  CAS  Google Scholar 

  37. Cooke D. and Kandlikar S.G.: Effect of open microchannel geometry on pool boiling enhancement. Int. J. Heat Mass Transfer 55, 1004–1013 (2012).

    Article  Google Scholar 

  38. Kandlikar S.G.: Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer. Appl. Phys. Lett. 102, 051611 (2013).

    Article  CAS  Google Scholar 

  39. Nukiyama S.: Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. Jpn. Soc. Mech. Eng. 37, 367–374 (1934).

    Google Scholar 

  40. Mikic B.B. and Rohsenow W.M.: A new correlation of pool boiling data including effect of heating surface characteristics. J. Heat Transfer 91, 245–250 (1969).

    Article  CAS  Google Scholar 

  41. Hsu K-Y.: On the size range of active nucleation cavities on a heating surface. ASME J. Heat Transfer 84, 207–216 (1962).

    Article  CAS  Google Scholar 

  42. Wang C.H. and Dhir V.K.: Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer-Trans. ASME 115, 659–669 (1993).

    Article  CAS  Google Scholar 

  43. Betz A., Xu J., Qiu H., and Attinger D.: Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett. 97, 141909 (2010).

    Article  CAS  Google Scholar 

  44. Jo H., Ahn H., Kang S., and Kim M.H.: A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int. J. Heat Mass Transfer 54, 5643–5652 (2011).

    Article  CAS  Google Scholar 

  45. Hwang G.S. and Kaviany M.: Critical heat flux in thin, uniform particle coatings. Int. J. Heat Mass Transfer 49, 844–849 (2006).

    Article  CAS  Google Scholar 

  46. Zuber N.: Hydrodynamic aspects of boiling heat transfer, AEC report AECU-4439. Ph.D. Thesis, UCLA, 1959.

    Google Scholar 

  47. Dhir V., Abarajith H.S., and Warrier G.R.: From nano to micro scales in boiling. In Microscale Heat Transfer Fundamentals and Applications, Proceedings of NATO-ASI Meeting, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 193, Kakac S., Vasiliev L., Bayazitoglu Y., and Yener Y. eds.; Kulwer Academic Publishers: The Netherlands, 2005.

  48. Theofanous T., Dinh T., Tu J.P., and Dinh A.T.: The boiling crisis phenomenon: Part II: Dryout dynamics and burnout. Exp. Therm. Fluid Sci. 26, 793–810 (2002).

    Article  CAS  Google Scholar 

  49. Webb R.L.: Odyssey of the enhanced boiling surface. J. Heat Transfer 126, 1051–1059 (2004).

    Article  CAS  Google Scholar 

  50. Berenson P.J.: Transition boiling heat transfer from a horizontal surface; Technical Report 17; M.I.T. Heat Transfer Laboratory, 1960.

    Google Scholar 

  51. Hummel R.L.: Means for increasing the heat transfer coefficient between a wall and boiling liquid. U.S. Patent No. 3207209, 1965.

    Google Scholar 

  52. Carey V.P.: Liquid-Vapor Phase-Change Phenomena (Taylor & Francis Group, New York, NY, 2008).

    Google Scholar 

  53. Frenkel J.: A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys. 7, 538 (1939).

    Article  CAS  Google Scholar 

  54. Basu N., Warrier G.R., and Dhir V.K.: Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. J. Heat Transfer 124, 717 (2002).

    Article  CAS  Google Scholar 

  55. Knapp R.T.: Cavitation and nuclei. Trans. ASME 80, 1321 (1958).

    Google Scholar 

  56. Bankoff S.G.: The prediction of surface temperature at incipient boiling. Chem. Eng. Prog., Symp. Ser. 55, 87 (1959).

    Google Scholar 

  57. Qi Y. and Klausner J.F.: Comparison of nucleation site density for pool boiling and gas nucleation. J. Heat Transfer 128, 13 (2006).

    Article  CAS  Google Scholar 

  58. Betz A., Jenkins J., Kim C-J., and Attinger D.: Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int. J. Heat Mass Transfer 57, 733–741 (2013).

    Article  CAS  Google Scholar 

  59. Tien C.L.: A hydrodynamic model for nucleate pool boiling. Int. J. Heat Mass Transfer 5, 533–540 (1962).

    Article  Google Scholar 

  60. Forster H.K. and Zuber N.: Dynamics of vapor bubbles and boiling heat transfer. AIChE 1, 531–535 (1955).

    Article  CAS  Google Scholar 

  61. Haider S.I. and Webb R.L.: A transient micro-convection model of nucleate pool boiling. Int. J. Heat Mass Transfer 40, 3675–3688 (1997).

    Article  CAS  Google Scholar 

  62. Utaka Y., Kashiwabara Y., and Ozaki M.: Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure. Int. J. Heat Mass Transfer 57, 222–230 (2013).

    Article  CAS  Google Scholar 

  63. Cooper M.G. and Lloyd A.J.P.: The microlayer in nucleate pool boiling. Int. J. Heat Mass Transfer 12, 895–913 (1969).

    Article  CAS  Google Scholar 

  64. Rohsenow W.: A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids (MIT, Cambridge, MA, 1951).

    Google Scholar 

  65. Dhir V.K.: Boiling heat transfer. Annu. Rev. Fluid Mech. 30, 365–401 (1998).

    Article  Google Scholar 

  66. Abarajith H.S. and Dhir V.K.: A Numerical Study of the Effect of Contact Angle on the Dynamics of a Single Bubble during Pool Boiling (ASME - Heat Transfer Division, New Orleans, LA, 2002).

    Book  Google Scholar 

  67. Kutateladze S.S.: On the transition to film boiling under natural convection. Kotloturbostroenie 3, 10 (1948).

    Google Scholar 

  68. Lienhard J.H. and Dhir V.K.: Extended Hydrodynamic Theory to the Peak and Minimum Pool Boiling Heat Fluxes, NASA CR, Vol. 2270 (National Technical Information Service, 1973).

  69. Haramura Y. and Katto Y.: A new hydrodynamic model of the critical heat flux, applicable widely to both pool and forced convective boiling on submerged bodies in saturated liquids. Int. J. Heat Mass Transfer 26, 389–399 (1983).

    Article  Google Scholar 

  70. Bui T.D. and Dhir V.K.: Transition boiling heat transfer on a vertical surface. J. Heat Transfer-Trans. ASME 107, 756–763 (1985).

    Article  CAS  Google Scholar 

  71. Kandlikar S.G.: A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123, 1071 (2001).

    Article  CAS  Google Scholar 

  72. Dhir V.K. and Liaw S.P.: Framework for a unified model for nucleate and transition pool boiling. J. Heat Transfer 111, 739–746 (1989).

    Article  CAS  Google Scholar 

  73. Kandlikar S. and Garimella S.: Heat Transfer and Fluid Flow in Minichannels and Microchannels (Elsevier, Oxford, UK, 2006); p. 227.

    Google Scholar 

  74. Rose J.W.: Dropwise condensation theory and experiment: A review. Proc. Inst. Mech. Eng., Part A 216, 115–128 (2002).

    Article  CAS  Google Scholar 

  75. Graham C. and Griffith P.: Drop size distributions and heat-transfer in dropwise condensation. Int. J. Heat Mass Transfer 16, 337–346 (1973).

    Article  CAS  Google Scholar 

  76. Bejan A.: Convective Heat Transfer (John Wiley & Sons Inc., Hoboken, NJ, 2003).

    Google Scholar 

  77. Schmidt E., Schurig W., and Sellschopp W.: Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Tech. Mech. Thermodyn. (Forsch. Ing. Wes.) 1 (2), 55–63 (1930).

    Google Scholar 

  78. Glassford A.P.M.: Practical model for molecular contaminant deposition kinetics. J. Thermophys. Heat Transfer 6, 656–664 (1992).

    Article  CAS  Google Scholar 

  79. Chen L., Chen C.Y., and Lee Y.L.: Nucleation and growth of clusters in the process of vapor deposition. Surf. Sci. 429, 150–160 (1999).

    Article  CAS  Google Scholar 

  80. Le Fevre E.J. and Rose J.W.: A theory of heat transfer by dropwise condensation. In Proceedings of the Third International Heat Transfer Conference, Vol. 2, Chicago, IL, 1966; p. 362–375.

    Google Scholar 

  81. Rose J.W.: A theory of heat transfer by dropwise condensation. In Proceedings of the Third International Heat Transfer Conference, Vol. 10, Chicago, IL, 1967.

  82. Rose J.W.: Interphase matter transfer, the condensation coefficient and dropwise condensation. In Proceedings of 11th International Conference, Kyongju, Vol. 2, 1998.

  83. Mikic B.B.: On mechanism of dropwise condensation. Int. J. Heat Mass Transfer 12, 1311–1323 (1969).

    Article  CAS  Google Scholar 

  84. Quere D., Azzopardi M.J., and Delattre L.: Drops at rest on a tilted plane. Langmuir 14, 2213–2216 (1998).

    Article  CAS  Google Scholar 

  85. Kim S. and Kim K.J.: Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transfer 133, 081502 (2011).

    Article  Google Scholar 

  86. Tanaka H.: Measurements of drop-size distributions during transient dropwise condensation. J. Heat Transfer-Trans. ASME 97, 341–346 (1975).

    Article  Google Scholar 

  87. Wu Y., Yang C.X., and Yuan X.G.: Drop distributions and numerical simulation of dropwise condensation heat transfer. Int. J. Heat Mass Transfer 44, 4455–4464 (2001).

    Article  CAS  Google Scholar 

  88. Ulrich S., Stoll S., and Pefferkorn E.: Computer simulations of homogeneous deposition of liquid droplets. Langmuir 20, 1763–1771 (2004).

    Google Scholar 

  89. Wenzel H.: Versuche über Tropfenkondensation, Allg. Wärmetech 8, 839–845 (1957).

    Google Scholar 

  90. B onner R.W.: Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination. Int. J. Heat Mass Transfer 61, 245–253 (2013).

    Google Scholar 

  91. Ma X., Zhou X., Lan Z., Li Y.M., and Zhang Y.: Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. Int. J. Heat Mass Transfer 51, 1728–1737 (2008).

    Article  CAS  Google Scholar 

  92. Grooten M.H.M. and van der Geld C.W.M.: Dropwise condensation from flowing air-steam mixtures: Diffusion resistance assessed by controlled drainage. Int. J. Heat Mass Transfer 54, 4507–4517 (2011).

    Article  Google Scholar 

  93. Minkowycz W.J. and Sparrow E.M.: Condensation heat transfer in the presence of non-condensables, interfacial resistance, super heating variable properties and diffusion. Int. J. Heat Mass Transfer 9, 1125–1144 (1966).

    Google Scholar 

  94. Utaka Y. and Nishikawa T.: Measurement of condensate film thickness for solutal Marangoni condensation applying laser extinction method. J. Enhanced Heat Transfer 10, 119–129 (2003).

    Article  CAS  Google Scholar 

  95. Utaka Y. and Kamiyama T.: Condensate drop movement in Marangoni condensation by applying bulk temperature gradient on heat transfer surface. Heat Transfer—Asian Res. 37, 387–397 (2008).

    Article  Google Scholar 

  96. Tanasawa I.: Advances in condensation heat transfer. Advances in Heat Transfer, Vol. 21 (Elsevier, New York, 1991).

    Google Scholar 

  97. Nusselt W.: Die Oberflachen Kondensation des Wasserdampfes, Zeitschrift. Ver. Dtsch. Ing. 60, 541–546 (1916).

    Google Scholar 

  98. Rohsenow W.M.: Heat transfer and temperature distribution in laminar film condensation. Trans. ASME J. Fluids Eng. 78, 1645 (1956).

    CAS  Google Scholar 

  99. Thibaut Brian P., Reid R.C., and Shah Y.T.: Frost deposition on cold surfaces. Ind. Eng. Chem. Fundam. 9, 375–380 (1970).

    Article  Google Scholar 

  100. Fortin G., Laforte J-L., and Ilinca A.: Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. Int. J. Heat Mass Transfer 45, 595–606 (2006).

    Google Scholar 

  101. Iragorry J., Tao Y.X., and Jia S.: A critical review of properties and models for frost formation analysis. HVACR Res. 10, 393–420 (2004).

    Article  Google Scholar 

  102. Piucco R., Hermes C.J.L., Melo C., and Barbosa J.R. Jr.: A study of frost nucleation on flat surfaces. Exp. Therm. Fluid Sci. 32, 1710–1715 (2008).

    Article  Google Scholar 

  103. Ryerson C.C.: Ice protection of offshore platforms. Cold Reg. Sci. Technol. 65, 97–110 (2011).

    Article  Google Scholar 

  104. Fletcher N.H.: The Chemical Physics of Ice (Cambridge University Press, London, 1970).

    Book  Google Scholar 

  105. Jung S., Dorrestijn M., Raps D., Das A., Megaridis C.M., and Poulikakos D.: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059–3066 (2011).

    Article  CAS  Google Scholar 

  106. Jung S., Tiwari M., Doan N.V., and Poulikakos D.: Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012).

    Article  CAS  Google Scholar 

  107. Na B. and Webb R.L.: A fundamental understanding of factors affecting frost nucleation. Int. J. Heat Mass Transfer 46, 3797–3808 (2003).

    Article  CAS  Google Scholar 

  108. Varanasi K., Deng T., Smith J., Hsu M., and Bhate N.: Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97, 234102 (2010).

    Article  CAS  Google Scholar 

  109. Lee H., Shin J., Ha S., Choi B., and Lee J.: Frost formation on a plate with different surface hydrophilicity. Int. J. Heat Mass Transfer 47, 4881–4893 (2004).

    Article  CAS  Google Scholar 

  110. Cao L., Jones A., Sikka V., Wu J.Z., and Gao D.: Anti-icing superhydrophobic coatings. Langmuir 25, 12444–12448 (2009).

    Article  CAS  Google Scholar 

  111. Kim P., Wong T., Alvarenga J., Kreder M., Adorno-Martinez W.E., and Aizenberg J.: Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 6569–6577 (2012).

    Article  CAS  Google Scholar 

  112. Jung S., Tiwari M.K., and Poulikakos D.: Frost halos from supercooled water droplets. Proc. Natl. Acad. Sci. U. S. A. 109, 16073–16078 (2012).

    Article  CAS  Google Scholar 

  113. Na B. and Webb R.L.: Mass transfer on and within a frost layer. Int. J. Heat Mass Transfer 47, 899–911 (2004).

    Article  CAS  Google Scholar 

  114. Liu Z., Zhang X., Wang H., Meng S., and Cheng S.: Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions. Exp. Therm. Fluid Sci. 31, 789–794 (2007).

    Article  Google Scholar 

  115. Le Gall R., Grillot J.M., and Jallut C.: Modelling of frost growth and densification. Int. J. Heat Mass Transfer 40, 3177–3187 (1997).

    Article  Google Scholar 

  116. Webb R.L.: The evolution of enhanced surface geometries for nucleate boiling. Heat Transfer Eng. 2, 46–69 (1981).

    Article  Google Scholar 

  117. Berenson P.J.: Experiments on pool-boiling heat transfer. Int. J. Heat Mass Transfer 5, 985–999 (1962).

    Article  CAS  Google Scholar 

  118. Webb R.L.: Heat transfer surface having a high boiling heat transfer coefficient. U.S. Patent No. 3696861A, 1972.

    Google Scholar 

  119. Zhou F., Izgorodin A., Hocking R., Spiccia L., and MacFarlane D.: Electrodeposited MnO x films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2, 1013–1021 (2012).

    Article  CAS  Google Scholar 

  120. Jiang Z., Tang Y., Tay Q., Zhang Y., Malyi O., Wang D., Deng J., Lai Y., Zhou H., Chen X., Dong Z., and Chen Z.: Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv. Energy Mater. 3, 1368–1380 (2013).

    Article  CAS  Google Scholar 

  121. Dahl M.M. and Erb L.E.: Liquid heat exchanger interface and method. U.S. Patent No. 3990862, 1976.

    Google Scholar 

  122. Jiang W. and Malshe A.P.: A novel cBN composite coating design and machine testing: A case study in turning. Surf. Coat. Technol. 206, 273–279 (2011).

    Article  CAS  Google Scholar 

  123. Kim C-J. and Bergles A.E.: Particulate Phenomena and Multiphase Transport, Vol. 2 (Hemisphere, Washington, D.C., 1988); pp. 3–18.

    Google Scholar 

  124. You S.M. and O’Connor J.P.: Boiling enhancement coating. U.S. Patent No. 5814392, 1998.

    Google Scholar 

  125. Xia Y. and Whitesides G.M.: Soft lithography. Annu. Rev. Mater. Res. 28, 153–184 (1998).

    CAS  Google Scholar 

  126. Lu C. and Lipson R.H.: Interference lithography: A powerful tool for fabricating periodic structures. Laser Photonics Rev. 4, 568–580 (2009).

    Article  CAS  Google Scholar 

  127. Plymouth Grating Laboratory: Scanning-beam interference lithography http://www.plymouthgrating.com/Technology/TechnologyPage.htm.

  128. Sun G., Hur J., Zhao X., and Kim C-J.: Fabrication of very-high-aspectratio micro metal posts and gratings by photoelectrochemical etching and electroplating. J. MEMS 20, 876–884 (2011).

    Article  CAS  Google Scholar 

  129. Lee C. and Kim C-J.: Influence of surface hierarchy of superhydrophobic surfaces on liquid slip. Langmuir 27, 4243–4248 (2011).

    Article  CAS  Google Scholar 

  130. Weibel J., Kim S., Fisher T.S., and Garimella S.V.: Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures. Nanoscale Microscale Thermophys. Eng. 16, 1–17 (2012).

    Article  CAS  Google Scholar 

  131. Lu Y-W. and Kandlikar S.G.: Nanoscale surface modification techniques for pool boiling enhancement: A critical review and future directions. Heat Transfer Eng. 32, 827–842 (2011).

    Article  CAS  Google Scholar 

  132. Gerasopoulos K., McCarthy M., Banerjee P., Fan X., Culver J.N., and Ghodssi R.: Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates. Nanotechnol. 21, 055304 (2010).

    Article  CAS  Google Scholar 

  133. Chu K-H., Enright R., and Wang E.N.: Structured surfaces for enhanced pool boiling heat transfer. Appl. Phys. Lett. 100, 241603 (2012).

    Article  CAS  Google Scholar 

  134. Choi C-H. and Kim C.J.: Fabrication of dense array of tall nanostructures over a very large sample area with sidewall profile and tip sharpness control. Nanotechnol. 17, 5326–5333 (2006).

    Article  CAS  Google Scholar 

  135. Du K., Wathuthanthri I., Mao W., Xu W., and Choi C.H.: Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnol. 22, 285306 (2011).

    Article  CAS  Google Scholar 

  136. Morimoto T., Sanada Y., and Tomonaga H.: Wet chemical functional coatings for automotive glasses and cathode ray tubes. Thin Solid Films 392, 214–222 (2001).

    Article  CAS  Google Scholar 

  137. Carrino L., Moroni G., and Polini W.: Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. J. Mater. Process. Technol. 121, 373–382 (2002).

    Article  CAS  Google Scholar 

  138. Bobzin K., Bagcivan N., Goebbels N., Yilmaz K., Hoehn B., Michaelis K., and Hochmann M.: Lubricated PVD CrAlN and WC/C coatings for automotive applications. Surf. Coat. Technol. 204, 1097–1101 (2009).

    Article  CAS  Google Scholar 

  139. Genzer J. and Efimenko K.: Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling 22, 339–360 (2006).

    Article  CAS  Google Scholar 

  140. Wang X., Zhi L., and Mullen K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).

    Article  CAS  Google Scholar 

  141. Barthlott W. and Neinhuis C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  142. Feng L., Li S., Li Y., Li H., Zhang L., Zhai J., Song Y., Liu B., Jiang L., and Zhu D.: Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 14, 1857–1860 (2002).

    Article  CAS  Google Scholar 

  143. Feng X., Feng L., Jin M., Zhai J., Jiang L., and Zhu D.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004).

    Article  CAS  Google Scholar 

  144. Sigal G., Mrksich M., and Whitesides G.M.: Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 120, 3464–3473 (1998).

    Article  CAS  Google Scholar 

  145. de Gennes P.G.: Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985).

    Article  Google Scholar 

  146. de Gennes P., Brochard-Wyart F., and Quéré D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004).

    Book  Google Scholar 

  147. Marmur A.: Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter 8, 6867 (2012).

    Article  CAS  Google Scholar 

  148. Young T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. 95, 65–87 (1804).

    Google Scholar 

  149. Dupré A. and Dupré P.: Théorie mécanique de la chaleur (Gauthier-Villars, Paris, 1869).

    Google Scholar 

  150. Wenzel R.N.: Resistance of solid surface to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    Article  CAS  Google Scholar 

  151. Cassie A.B.D. and Baxter S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944).

    Article  CAS  Google Scholar 

  152. Feng X.J. and Jiang L.: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063–3078 (2006).

    Article  CAS  Google Scholar 

  153. Feng L., Zhang Y., Xi J., Zhu Y., Wang N., Xia F., and Jiang L.: Petal effect: A superhydrophobic state with high adhesive force. Langmuir 24, 4114–4119 (2008).

    Article  CAS  Google Scholar 

  154. Dorrer C. and Rühe J.: Some thoughts on superhydrophobic wetting. Soft Matter 5, 51 (2009).

    Article  CAS  Google Scholar 

  155. Nosonovsky M. and Bhushan B.: Biomimetic superhydrophobic surfaces: Multiscale approach. Nano Lett. 7, 2633–2637 (2007).

    Article  CAS  Google Scholar 

  156. Cebeci F.Ç., Wu Z., Zhai L., Cohen R.E., and Rubner M.F.: Nanoporositydriven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir 22, 2856–2 862 (2006).

    Article  CAS  Google Scholar 

  157. Dorrer C. and Ruehe J.: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820–3824 (2007).

    Article  CAS  Google Scholar 

  158. Vakarelski I., Patankar N., Marston J., Chan D.Y., and Thoroddsen S.T.: Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).

    Article  CAS  Google Scholar 

  159. Johnson R.E. and Dettre R.H.: Contact Angle, Wettability and Adhesion (Advances in Chemistry Series 43) (American Chemical Society, Washington, DC, 1964).

    Google Scholar 

  160. Oner D. and McCarthy T.J.: Ultrahydrophobic surfaces. Effect of topography length scales on wettability. Langmuir 16, 7777–7782 (2000).

    Article  CAS  Google Scholar 

  161. Richard D. and Quere D.: Viscous drops rolling on a tilted non-wettable solid. Europhys. Lett. 48, 286–291 (1999).

    Article  CAS  Google Scholar 

  162. Dhir V.K.: Nucleate and transition boiling heat transfer under pool and external flow conditions. Int. J. Heat Fluid Flow 12, 290–314 (1991).

    Article  CAS  Google Scholar 

  163. Takata Y., Hidaka S., Cao J., Nakamura T., Yamamoto H., Masuda M., and Ito T.: Effect of surface wettability on boiling and evaporation. Energy 30, 209–220 (2005).

    Article  CAS  Google Scholar 

  164. Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., and Watanabe T.: Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997).

    Article  CAS  Google Scholar 

  165. Zisman W.A.: Contact Angle, Wettability, and Adhesion, Ch. 2, pp. 1–51 (American Chemical Society, Washington, DC, 1964).

    Book  Google Scholar 

  166. Phan H., Caney N., Marty P., Colasson S., and Gavillet J.: How does surface wettability influence nucleate boiling? C. R. Mécanique 337, 251–259 (2009).

    Article  CAS  Google Scholar 

  167. Phan H., Caney N., Marty P., Colasson S., and Gavillet J.: Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. Int. J. Heat Mass Transfer 52, 5459–5471 (2009).

    Article  CAS  Google Scholar 

  168. Liaw S.P. and Dhir V.K.: Effect of surface wettability on transition boiling heat transfer from a vertical surface. In Proceedings of 8th International Heat Transfer Conference, Vol. 4, San Francisco, CA, 1986.

  169. Ma X., Rose J., Xu D., Lin J.F., and Wang B.X.: Advances in dropwise condensation heat transfer: Chinese research. Chem. Eng. J. 78, 87–93 (2000).

    Article  CAS  Google Scholar 

  170. Zhao Q. and Burnside B.M.: Dropwise condensation of steam on ion-implanted condenser surfaces. Heat Recovery Syst. CHP 14, 525–534 (1994).

    Article  CAS  Google Scholar 

  171. Azimi G., Dhiman R., Kwon H-M., Paxson A.T., and Varanasi K.K.: Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315–320 (2013).

    Article  CAS  Google Scholar 

  172. Vachon R., Nix G., Tanger G.E., and Cobb R.O.: Pool boiling heat transfer from Teflon-coated stainless steel. J. Heat Transfer 91, 364–369 (1969).

    Article  CAS  Google Scholar 

  173. Bain C., Troughton E., Tao Y., Evall J., Whitesides G.M., and Nuzzo R.G.: Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989).

    Article  CAS  Google Scholar 

  174. Balss K., Avedisian C., Cavicchi R.E., and Tarlov M.J.: Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers. Langmuir 21, 10459–10467 (2005).

    Article  CAS  Google Scholar 

  175. Bourdon B., Rioboo R., Marengo M., Gosselin E., and De Coninck J.: Influence of the wettability on the boiling onset. Langmuir 28, 1618–1624 (2012).

    Article  CAS  Google Scholar 

  176. Thomas O., Cavicchi R.E., and Tarlov M.J.: Effect of surface wettability on fast transient microboiling behavior. Langmuir 19, 6168–6177 (2003).

    Article  CAS  Google Scholar 

  177. Blackman L.C.F., Dewar M.J.S., and Hampson H.: An investigation of compounds promoting the dropwise condensation of steam. J. Appl. Chem. 7, 160–171 (1957).

    Article  CAS  Google Scholar 

  178. Tanner D., Pope D., Potter C.J., and West D.: Heat transfer in dropwise condensation—Part II surface chemistry. Int. J. Heat Mass Transfer 8, 427–436 (1965).

    Article  CAS  Google Scholar 

  179. Hare E., Shafrin E.G., and Zisman W.A.: Properties of films of adsorbed fluorinated acids. J. Phys. Chem. 58, 236–239 (1954).

    Article  CAS  Google Scholar 

  180. Zhao Q., Zhang D., Lin J.F., and Wang G.M.: Dropwise condensation on L-B film surface. Chem. Eng. Process. 35, 473–477 (1996).

    Article  CAS  Google Scholar 

  181. Forrest E., Williamson E., Buongiorno J., Hu L-W., Rubner M., and Cohen R.: Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transfer 53, 58–67 (2010).

    Google Scholar 

  182. Hsu C-C. and Chen P-H.: Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int. J. Heat Mass Transfer 55, 3713–3719 (2012).

    Article  CAS  Google Scholar 

  183. Smith J., Meuler A., Bralower H., Venkatesan R., Subramanian S., Cohen R., McKinley G.H., and Varanasi K.K.: Hydrate-phobic surfaces: Fundamental studies in clathrate hydrate adhesion reduction. Phys. Chem. Chem. Phys. 14, 6013–6020 (2012).

    Article  CAS  Google Scholar 

  184. Paxson A., Yagüe J., Gleason K.K., and Varanasi K.K.: Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films. Adv. Mater. 26, 418–423 (2013).

    Article  CAS  Google Scholar 

  185. Wen D.S. and Wang B.X.: Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int. J. Heat Mass Transfer 45, 1739–1747 (2002).

    Article  CAS  Google Scholar 

  186. Morgenthaler S., Zink C., and Spencer N.D.: Surface-chemical and -morphological gradients. Soft Matter 4, 419–434 (2008).

    Article  CAS  Google Scholar 

  187. Zhai L., Berg M., Cebeci F., Kim Y., Milwid J., Rubner M.F., and Cohen R.E.: Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert Beetle. Nano Lett. 6, 1213–1217 (2006).

    Article  CAS  Google Scholar 

  188. Parker A.R. and Lawrence C.R.: Water capture by a desert beetle. Nature 414, 33–34 (2001).

    Article  CAS  Google Scholar 

  189. Chaudhury M.K. and Whitesides G.M.: How to make water run uphill. Science 256, 1539–1541 (1992).

    Article  CAS  Google Scholar 

  190. Gaertner R.F.: Method and means for increasing the heat transfer coefficient between a wall and boiling liquid. U.S. Patent No. 3301314, 1967.

    Google Scholar 

  191. Lopez G., Biebuyck H., Frisbie C.D., and Whitesides G.M.: Imaging of features on surfaces by condensation figures. Science 260, 647–649 (1993).

    Article  CAS  Google Scholar 

  192. Abbott N., Folkers J.P., and Whitesides G.M.: Manipulation of the wettability of surfaces on the 0.1-micrometer to 1-micrometer scale through micromachining and molecular self-assembly. Science 257, 1380–1382 (1992).

    Article  CAS  Google Scholar 

  193. Thickett S., Neto C., and Harris A.T.: Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater. 23, 3718–3722 (2011).

    Article  CAS  Google Scholar 

  194. Varanasi K., Hsu M., Bhate N., Yang W., and Deng T.: Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009).

    Article  CAS  Google Scholar 

  195. Mishchenko L., Aizenberg J., and Hatton B.D.: Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches. Adv. Funct. Mater. 40, 546–551 (2013).

    Google Scholar 

  196. Jokinen V., Sainiemi L., and Franssila S.: Complex droplets on chemically modified silicon nanograss. Adv. Mater. 20, 3453–3456 (2008).

    Article  CAS  Google Scholar 

  197. Lee A., Moon M-W., Lim H., Kim W-D., and Kim H-Y.: Water harvest via dewing. Langmuir 28, 10183–10191 (2012).

    Article  CAS  Google Scholar 

  198. Tadanaga K., Morinaga J., Matsuda A., and Minami T.: Superhydrophobicsuperhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem. Mater. 12, 590–592 (2000).

    Article  CAS  Google Scholar 

  199. Branson E., Shah P., Singh S., and Brinker C.J.: Preparation of hydrophobic coatings. U.S. Patent No. 7,485,343, 2009.

    Google Scholar 

  200. Garrod R., Harris L., Schofield W.C.E., McGettrick J., Ward L., Teare D.O.H., and Badyal J.P.S.: Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobicsuperhydrophilic surfaces. Langmuir 23, 689–693 (2007).

    Article  CAS  Google Scholar 

  201. Pastine S., Okawa D., Kessler B., Rolandi M., Llorente M., Zettl A., and Frechet J.M.J.: A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J. Am. Chem. Soc. 130, 4238–4239 (2008).

    Article  CAS  Google Scholar 

  202. Her E., Ko T., Lee K., Oh K.H., and Moon M.W.: Bioinspired steel surfaces with extreme wettability contrast. Nanoscale 4, 2900–2905 (2012).

    Article  CAS  Google Scholar 

  203. Kobaku S.P.R., Kota A., Lee D., Mabry J.M., and Tuteja A.: Patterned superomniphobic-superomniphilic surfaces: Templates for site-selective self-assembly. Angew. Chem. Int. Ed. 51, 10109–10113 (2012).

    Article  CAS  Google Scholar 

  204. Schutzius T., Bayer I., Jursich G., Das A., and Megaridis C.M.: Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films. Nanoscale 4, 5378–5385 (2012).

    Article  CAS  Google Scholar 

  205. Ueda E. and Levkin P.A.: Emerging applications of superhydrophilicsuperhydrophobic micropatterns. Adv. Mater. 25, 1234–1247 (2013).

    Article  CAS  Google Scholar 

  206. Sarwar M., Jeong Y.H., and Chang S.H.: Subcooled flow boiling CHF enhancement with porous surface coatings. Int. J. Heat Mass Transfer 50, 3649–3657 (2007).

    Article  CAS  Google Scholar 

  207. Zhou X. and Bier K.: Pool boiling heat transfer from a horizontal tube coated with oxide ceramics. Int. J. Refrig. 20, 552–560 (1997).

    Article  CAS  Google Scholar 

  208. Zimmermann J., Rabe M., Artus G.R.J., and Seeger S.: Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter 4, 450–452 (2008).

    Article  CAS  Google Scholar 

  209. Jakob M. and Fritz W.: Versuche über den Verdampfungsvorgang. Forsch. Ingenieurwes. 2, 435–447 (1931).

    Article  Google Scholar 

  210. Corty C. and Foust A.S.: Surface variables in nucleate boiling. Chem. Eng. Prog., Symp. Ser. 51, 1–12 (1955).

    CAS  Google Scholar 

  211. Kurihara H.M. and Myers J.E.: The effects of superheat and surface roughness on boiling coefficients. AIChE J. 6, 83–91 (1960).

    Article  CAS  Google Scholar 

  212. Bergles A.E. and Manglik R.M.: Current progress and new developments in enhanced heat and mass transfer. J. Enhanced Heat Transfer 20, 1–15 (2013).

    Article  Google Scholar 

  213. Bankoff S.G.: Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J. 4 (1), 24–26 (1958).

    Article  CAS  Google Scholar 

  214. Bankoff S.G.: Ebullition from solid surfaces in the presence of pre-existing gaseous phase. Trans. ASME 79, 735 (1957).

    CAS  Google Scholar 

  215. Lorenz J., Mikic B.B., and Rohsenow W.M.: The Effects of Surface Conditions on Boiling Characteristics (Issue 79 of Technical Report) (M.I.T. Engineering Projects Laboratory, 1972).

    Google Scholar 

  216. Zhang B., Kim K.J., and Yoon H.: Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling. Int. J. Heat Mass Transfer 55, 7487–7498 (2012).

    Article  CAS  Google Scholar 

  217. Kim C-J.: Structured surfaces for enhanced nucleate boiling. M.S. Thesis, Iowa State University, 1985.

    Google Scholar 

  218. Clark H., Strenge P.S., and Westwater J.: Active sites for nucleate boiling. Chem. Eng. Prog., Symp. Ser. 55, 103–110 (1959).

    Google Scholar 

  219. Yang S.R. and Kim R.H.: A mathematical model of the nucleation site density in terms of the surface characteristics. Int. J. Heat Mass Transfer 31, 1127–1135 (1988).

    Article  CAS  Google Scholar 

  220. Griffith P. and Wallis J.D.: The Role of Surface Conditions in Nucleate Boiling (MIT, Cambridge, MA, 1958).

    Google Scholar 

  221. Shoji M.: Studies of boiling chaos: A review. Int. J. Heat Mass Transfer 47, 1105–1128 (2004).

    Article  CAS  Google Scholar 

  222. Marto P.J. and Rohsenow W.: Effects of surface conditions on nucleate pool boiling of sodium. J. Heat Transfer 88, 196–203 (1966).

    Article  CAS  Google Scholar 

  223. Milton R.M.: Heat exchange system. U.S. Patent No. 3384154, 1968.

    Google Scholar 

  224. Milton R.M.: Heat exchange system. U.S. Patent No. 3523577, 1970.

    Google Scholar 

  225. Milton R.M.: Heat exchange system with porous boiling layer. U.S. Patent No. 3587730, 1971.

    Google Scholar 

  226. Chien L.H. and Webb R.L.: Visualization of pool boiling on enhanced surfaces. Exp. Therm. Fluid Sci. 16, 332–341 (1998).

    Article  CAS  Google Scholar 

  227. Chien L-H. and Webb R.L.: A nucleate boiling model for structured enhanced surfaces. Int. J. Heat Mass Transfer 41, 2183–2195 (1998).

    Article  CAS  Google Scholar 

  228. Ujereh S., Fisher T.S., and Mudawar I.: Effect of carbon nanotube arrays on nucleate pool boiling. Int. J. Heat Mass Transfer 50, 4023–4038 (2007).

    Article  CAS  Google Scholar 

  229. Gaertner R.F.: Effect of Heater Surface Chemistry on the Level of Burnout Heat Flux in Pool Boiling (General Electric Laboratory, Schenectady, NY, 1963).

    Google Scholar 

  230. Bourdon B., Di Marco P., Rioboo R., Marengo M., and De Coninck J.: Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces. Int. Commun. Heat Mass Transfer 45, 11–15 (2013).

    Article  CAS  Google Scholar 

  231. Takata Y., Hidaka S., and Uraguchi T.: Boiling feature on a super water-repellent surface. Heat Transfer Eng. 27, 25–30 (2006).

    Article  CAS  Google Scholar 

  232. Lu M-C., Chen R., Srinivasan V., Carey V.P., and Majumdar A.: Critical heat flux of pool boiling on Si nanowire array-coated surfaces. Int. J. Heat Mass Transfer 54, 5359–5367 (2011).

    Article  CAS  Google Scholar 

  233. Chen R., Lu M., Srinivasan V., Wang Z., Cho H.H., and Majumdar A.: Nanowires for enhanced boiling heat transfer. Nano Lett. 9, 548–553 (2009).

    Article  CAS  Google Scholar 

  234. Yao Z., Lu Y.W., and Kandlikar S.G.: Effects of nanowire height on pool boiling performance of water on silicon chips. Int. J. Therm. Sci. 50, 2084–2090 (2011).

    Article  CAS  Google Scholar 

  235. Yao Z., Lu Y-W., and Kandlikar S.G.: Direct growth of copper nanowires on a substrate for boiling applications. Micro Nano Lett. 6, 563–566 (2011).

    Article  CAS  Google Scholar 

  236. Dai X., Huang X., Yang F., Li X., Sightler J., Yang Y., and Li C.: Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Appl. Phys. Lett. 102, 161605 (2013).

    Article  CAS  Google Scholar 

  237. Hendricks T., Krishnan S., Choi C., Chang C-H., and Paul B.: Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int. J. Heat Mass Transfer 53, 3357–3365 (2010).

    Article  CAS  Google Scholar 

  238. Li S., Furberg R., Toprak M., Palm B., and Muhammed M.: Natureinspired boiling enhancement by novel nanostructured macroporous surfaces. Adv. Funct. Mater. 18, 2215–2220 (2008).

    Article  CAS  Google Scholar 

  239. Furberg R., Palm B., Li S., Toprak M., and Muhammed M.: The use of a nano- and microporous surface layer to enhance boiling in a plate heat exchanger. J. Heat Transfer-Trans. ASME 131, 101010 (2009).

    Article  CAS  Google Scholar 

  240. Ahn H., Jo H., Kang S.H., and Kim M.H.: Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Appl. Phys. Lett. 98, 071908 (2011).

    Article  CAS  Google Scholar 

  241. Shen J., Graber C., Liburdy J., Pence D., and Narayanan V.: Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces. Exp. Therm. Fluid Sci. 34, 496–503 (2010).

    Article  CAS  Google Scholar 

  242. Lee C., Bhuiya M.M.H., and Kim K.J.: Pool boiling heat transfer with nano-porous surface. Int. J. Heat Mass Transfer 53, 4274–4279 (2010).

    Article  CAS  Google Scholar 

  243. Sathyamurthi V., Ahn H., Banerjee D., and Lau S.C.: Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes. J. Heat Transfer-Trans. ASME 131, 071501 (2009).

    Article  CAS  Google Scholar 

  244. Kim H.D. and Kim M.H.: Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl. Phys. Lett. 91, 014104 (2007).

    Article  CAS  Google Scholar 

  245. Chang J.Y. and You S.M.: Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72. Int. J. Heat Mass Transfer 40, 4437–4447 (1997).

    Article  CAS  Google Scholar 

  246. Moreno G., Narumanchi S., and King C.: Pool boiling heat transfer characteristics of HFO-1234yf on plain and microporous-enhanced surfaces. J. Heat Transfer 135, 111014 (2013).

    Article  CAS  Google Scholar 

  247. Feng B., Weaver K., and Peterson G.P.: Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina. Appl. Phys. Lett. 100, 053120 (2012).

    Article  CAS  Google Scholar 

  248. Launay S., Fedorov A., Joshi Y., Cao A., and Ajayan P.M.: Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectron. J. 37, 1158–1164 (2006).

    Article  CAS  Google Scholar 

  249. Webb R.L.: Odyssey of the enhanced boiling surface. ASME Conf. Proc. 2004, 961–969 (2004).

    Google Scholar 

  250. Liter S.G. and Kaviany M.: Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment. Int. J. Heat Mass Transfer 44, 4287–4311 (2001).

    Article  CAS  Google Scholar 

  251. Kim S., Kim H., Kim H., Ahn H., Jo H., Kim J., and Kim M.H.: Effects of nano-fluid and surfaces with nano structure on the increase of CHF. Exp. Therm. Fluid Sci. 34, 487–495 (2010).

    Article  CAS  Google Scholar 

  252. Nam Y. and Ju Y.S.: Bubble nucleation on hydrophobic islands provides evidence to anomalously high contact angles of nanobubbles. Appl. Phys. Lett. 93, 103115 (2008).

    Article  CAS  Google Scholar 

  253. Suroto B., Tashiro M., Hirabayashi S., Hidaka S., Kohno M., and Takata Y.: Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface. J. Therm. Sci. Technol. 8, 294–308 (2013).

    Article  CAS  Google Scholar 

  254. Wang X., Song Y., and Wang H.: An experimental study of bubble formation on a microwire coated with superhydrophobic micropatterns. Heat Transfer Res. 44, 59–70 (2013).

    Article  CAS  Google Scholar 

  255. Bergles A.E. and Morton H.L.: Survey and Evaluation of Techniques to Augment Convective Heat Transfer (M.I.T. Dept. of Mechanical Engineering, Cambridge, Mass, 1965).

    Google Scholar 

  256. Williams A., Nandapurkar S.S., and Holland F.A.: A review of methods for enhancing heat transfer rates in surface condensers. Trans. Inst. Chem. Eng. Chem. Eng. 46, CE367–CE373 (1968).

    Google Scholar 

  257. Gregorig R.: Film condensation on finely rippled surfaces with consideration of surface tension. Z. Angew. Math. Phys. 5, 36–49 (1954).

    Article  Google Scholar 

  258. Bansal G., Khandekar S., and Muralidhar K.: Measurement of heat transfer during drop-wise condensation of water on polyethylene. Nanoscale Microscale Thermophys. Eng. 13, 184–201 (2009).

    Article  CAS  Google Scholar 

  259. Enright R., Miljkovic N., Alvarado J., Kim K., and Rose J.W.: Dropwise condensation on micro- and nanostructured surfaces. Nanoscale Microscale Thermophys. Eng. 18 (3), (2014).

    Google Scholar 

  260. Miljkovic N., Enright R., and Wang E.N.: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 1776–1785 (2012).

    Article  CAS  Google Scholar 

  261. Boreyko J.B. and Collier C.P.: Dewetting transitions on superhydrophobic surfaces: When are Wenzel drops reversible? J. Phys. Chem. C 117 (35), 18084–18090 (2013).

    Article  CAS  Google Scholar 

  262. Haraguchi T., Shimada R., Kumagai S., and Takeyama T.: The effect of polyvinylidene chloride coating thickness on promotion of dropwise steam condensation. Int. J. Heat Mass Transfer 34, 3047–3054 (1991).

    Article  CAS  Google Scholar 

  263. Marto P., Looney D., Rose J.W., and Wanniarachchi A.S.: Evaluation of organic coatings for the promotion of dropwise condensation of steam. Int. J. Heat Mass Transfer 29, 1109–1117 (1986).

    Article  CAS  Google Scholar 

  264. Vemuri S. and Kim K.J.: An experimental and theoretical study on the concept of dropwise condensation. Int. J. Heat Mass Transfer 49, 649–657 (2006).

    Article  CAS  Google Scholar 

  265. Vemuri S., Kim K., Wood B., Govindaraju S., and Bell T.W.: Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan. Appl. Therm. Eng. 26, 421–429 (2006).

    Article  CAS  Google Scholar 

  266. Pang G., Dale J.D., and Kwok D.Y.: An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry. Int. J. Heat Mass Transfer 48, 307–316 (2005).

    Article  CAS  Google Scholar 

  267. Yang Q. and Gu A.: Dropwise condensation on SAM and electroless composite coating surfaces. J. Chem. Eng. Jpn. 39, 826–830 (2006).

    Article  CAS  Google Scholar 

  268. Yin L., Wang Y., Ding J., Wang Q., and Chen Q.: Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Appl. Surf. Sci. 258, 4063–4068 (2012).

    Article  CAS  Google Scholar 

  269. Sikarwar B., Battoo N., Khandekar S., and Muralidhar K.: Dropwise condensation underneath chemically textured surfaces: Simulation and experiments. Journal of Heat Transfer-Trans. ASME 133, 021501 (2011).

    Article  CAS  Google Scholar 

  270. Izumi M., Kumagai S., Shimada R., and Yamakawa N.: Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves. Exp. Therm. Fluid Sci. 28, 243–248 (2004).

    Article  CAS  Google Scholar 

  271. Narhe R.D. and Beysens D.A.: Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98–104 (2006).

    Article  CAS  Google Scholar 

  272. Jung Y.C. and Bhushan B.: Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J. Microsc. 229, 127–140 (2008).

    Article  CAS  Google Scholar 

  273. Enright R., Miljkovic N., Al-Obeidi A., Thompson C.V., and Wang E.N.: Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 28, 14424–14432 (2012).

    Article  CAS  Google Scholar 

  274. Rykaczewski K., Osborn W., Chinn J., Walker M., Scott J.H.J., Jones W., Hao C., Yao S.H., and Wang Z.K.: How nanorough is rough enough to make a surface superhydrophobic during water condensation? Soft Matter 8, 8786–8794 (2012).

    Article  CAS  Google Scholar 

  275. Wier K.A. and McCarthy T.J.: Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir 22, 2433–2436 (2006).

    Article  CAS  Google Scholar 

  276. Lafuma A. and Quere D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003).

    Article  CAS  Google Scholar 

  277. Narhe R.D. and Beysens D.A.: Nucleation and growth on a superhydrophobic grooved surface. Phys. Rev. Lett. 93, 076103 (2004).

    Article  CAS  Google Scholar 

  278. Narhe R.D. and Beysens D.A.: Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 6486–6489 (2007).

    Article  CAS  Google Scholar 

  279. Cheng Y., Rodak D., Angelopoulos A., and Gacek T.: Microscopic observations of condensation of water on lotus leaves. Appl. Phys. Lett. 87, 194112 (2005).

    Article  CAS  Google Scholar 

  280. Lau K.K.S., Bico J., Teo K.B.K., Chhowalla M., Amaratunga G.A.J., Milne W., McKinley G.H., and Gleason K.K.: Superhydrophobic carbon nanotube forests. Nano Lett. 3, 1701–1705 (2003).

    Article  CAS  Google Scholar 

  281. Journet C., Moulinet S., Ybert C., Purcell S.T., and Bocquet L.: Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure. Europhys. Lett. 71, 104–109 (2005).

    Article  CAS  Google Scholar 

  282. Ma X., Wang S., Lan Z., Peng B., Ma H.B., and Cheng P.: Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas. J. Heat Transfer-Trans. ASME 134, 021501 (2012).

    Article  CAS  Google Scholar 

  283. Lee S., Cheng K., Palmre V., Bhuiya M., Kim K., Zhang B.J., and Yoon H.: Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface. Int. J. Heat Mass Transfer 65, 619–626 (2013).

    Article  CAS  Google Scholar 

  284. Tsuruta T., Tanaka H., and Togashi S.: Experimental verification of constriction resistance theory in dropwise condensation heat transfer. Int. J. Heat Mass Transfer 34, 2787–2796 (1991).

    Article  CAS  Google Scholar 

  285. Tsuruta T. and Tanaka H.: A theoretical study on the constriction resistance in dropwise condensation. Int. J. Heat Mass Transfer 34, 2779–2786 (1991).

    Article  CAS  Google Scholar 

  286. Rykaczewski K.: Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. L angmuir 28, 7720–7729 (2012).

    Article  CAS  Google Scholar 

  287. Miljkovic N., Enright R., Maroo S., Cho H.J., and Wang E.N.: Liquid evaporation on superhydrophobic and superhydrophilic nanostructured surfaces. J. Heat Transfer-Trans. ASME 133, 080903 (2011).

    Article  CAS  Google Scholar 

  288. Miljkovic N., Enright R., Nam Y., Lopez K., Dou N., Sack J., and Wang E.N.: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179–187 (2013).

    Article  CAS  Google Scholar 

  289. Chen X., Wu J., Ma R., Hua M., Koratkar N., Yao S., and Wang Z.: Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 21, 4617–4623 (2011).

    Article  CAS  Google Scholar 

  290. Cheng J., Vandadi A., and Chen C-L.: Condensation heat transfer on two-tier superhydrophobic surfaces. Appl. Phys. Lett. 101, 131909 (2012).

    Article  CAS  Google Scholar 

  291. Liu T., Sun W., Sun X., and Ai H.: Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state. Langmuir 26, 14835–14841 (2010).

    Article  CAS  Google Scholar 

  292. Liu T., Sun W., Sun X.Y., and Ai H.R.: Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf., A 414, 366–374 (2012).

    Article  CAS  Google Scholar 

  293. Rykaczewski K., Paxson A., Anand S., Chen X., Wang Z.K., and Varanasit K.K.: Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881–891 (2013).

    Article  CAS  Google Scholar 

  294. Kumar A. and Whitesides G.M.: Patterned condensation figures as optical diffraction gratings. Science 263, 60–62 (1994).

    Article  CAS  Google Scholar 

  295. Daniel S., Chaudhury M.K., and Chen J.C.: Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).

    Article  CAS  Google Scholar 

  296. Derby M., Chatterjee A., Peles A., and Jensen M.K.: Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns. Int. J. Heat Mass Transfer 68, 151–160 (2014).

    Article  CAS  Google Scholar 

  297. Xiao R., Miljkovic N., Enright R., and Wang E.: Immersion condensation on oil-infused heterogeneous surface for enhanced heat transfer. Sci. Rep. 3, 1988 (2013).

    Article  Google Scholar 

  298. Yao C., Garvin T., Alvarado J., Jacobi A., Jones B.G., and Marsh C.P.: Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties. Appl. Phys. Lett. 101, 111605 (2012).

    Article  CAS  Google Scholar 

  299. Croutch V.K. and Hartley R.A.: Adhesion of ice to coatings and the performance of ice release coatings. J. Coat. Technol. 64, 41–53 (1992).

    CAS  Google Scholar 

  300. Somlo B. and Gupta V.: A hydrophobic self-assembled monolayer with improved adhesion to aluminum for deicing application. Mech. Mater. 33, 471–480 (2001).

    Article  Google Scholar 

  301. Li K., Xu S., Shi W., He M., Li H., Li S., Zhou X., Wang J., and Song Y.: Investigating the effects of solid surfaces on ice nucleation. Langmuir 28, 10749–10754 (2012).

    Article  CAS  Google Scholar 

  302. Saito H., Takai K., and Yamauchi G.: Water- and ice-repellent coatings. JOCCA-Surf. Coat. Int. 80, 168–171 (1997).

    Article  CAS  Google Scholar 

  303. Charpentier T., Neville A., Millner P., Hewson R.W., and Morina A.: Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces. J. Colloid Interface Sci. 394, 539–544 (2013).

    Article  CAS  Google Scholar 

  304. Arianpour F., Farzaneh M., and Kulinich S.A.: Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl. Surf. Sci. 265, 546–552 (2013).

    Article  CAS  Google Scholar 

  305. Boreyko J.B. and Collier C.P.: Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 7, 1618–1627 (2013).

    Article  CAS  Google Scholar 

  306. Zhang Q., He M., Chen J., Wang J., Song Y., and Jiang L.: Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem. Commun. 49, 4516–4518 (2013).

    Article  CAS  Google Scholar 

  307. He M., Wang J., Li H., and Song Y.: Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 7, 3993 (2011).

    Article  CAS  Google Scholar 

  308. Zhang Q., He M., Zeng X., Li K., Cui D., Chen J., Wang J., Song Y., and Jiang L.: Condensation mode determines the freezing of condensed water on solid surfaces. Soft Matter 8, 8285 (2012).

    Article  CAS  Google Scholar 

  309. Yin L., Xia Q., Xue J., Yang S., Wang Q., and Chen Q.: In situ investigation of ice formation on surfaces with representative wettability. Appl. Surf. Sci. 256, 6764–6769 (2010).

    Article  CAS  Google Scholar 

  310. Guo P., Zheng Y., Wen M., Song C., Lin Y., and Jiang L.: Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 2642–2648 (2012).

    Article  CAS  Google Scholar 

  311. Boinovich L., Zhevnenko S., Emel’yanenko A., Gol’dshtein R.V., and Epifanov V.P.: Adhesive strength of the contact of ice with a superhydrophobic coating. Dokl. Chem. 448, 71–75 (2013).

    Article  CAS  Google Scholar 

  312. Jafari R., Menini R., and Farzaneh M.: Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl. Surf. Sci. 257, 1540–1543 (2010).

    Article  CAS  Google Scholar 

  313. Kulinich S.A. and Farzaneh M.: Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 255, 8153–8157 (2009).

    Article  CAS  Google Scholar 

  314. Menini R. and Farzaneh M.: Elaboration of Al2O3/PTFE icephobic coatings for protecting aluminum surfaces. Surf. Coat. Technol. 203, 1941–1946 (2009).

    Article  CAS  Google Scholar 

  315. Sarkar D.K. and Farzaneh M.: Superhydrophobic coatings with reduced ice adhesion. J. Adhes. Sci. Technol. 23, 1215–1237 (2009).

    Article  CAS  Google Scholar 

  316. Saleema N., Farzaneh M., Paynter R.W., and Sarkar D.K.: Prevention of ice accretion on aluminum surfaces by enhancing their hydrophobic properties. J. Adhes. Sci. Technol. 25, 27–40 (2011).

    Article  CAS  Google Scholar 

  317. Kulinich S.A. and Farzaneh M.: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25, 8854–8856 (2009).

    Article  CAS  Google Scholar 

  318. Nosonovsky M. and Hejazi V.: Why superhydrophobic surfaces are not always icephobic. ACS Nano 6, 8488–8491 (2012).

    Article  CAS  Google Scholar 

  319. Meuler A., Smith J., Varanasi K., Mabry J., McKinley G.H., and Cohen R.E.: Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2, 3100–3110 (2010).

    Article  CAS  Google Scholar 

  320. Kulinich S., Farhadi S., Nose K., and Du X.W.: Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 27, 25–29 (2011).

    Article  CAS  Google Scholar 

  321. Yang S., Xia Q., Zhu L., Xue J., Wang Q., and Chen Q-M.: Research on the icephobic properties of fluoropolymer-based materials. Appl. Surf. Sci. 257, 4956–4962 (2011).

    Article  CAS  Google Scholar 

  322. Shirtcliffe N., McHale G., and Newton M.I.: The superhydrophobicity of polymer surfaces: Recent developments. J. Polym. Sci. Part B: Polym. Phys. 49, 1203–1217 (2011).

    Article  CAS  Google Scholar 

  323. Peng C., Xing S., Yuan Z., Xiao J., Wang C., and Zeng J.: Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Appl. Surf. Sci. 259, 764–768 (2012).

    Article  CAS  Google Scholar 

  324. Jing T., Kim Y., Lee S., Kim D., Kim J., and Hwang W.: Frosting and defrosting on rigid superhydrophobic surface. Appl. Surf. Sci. 276, 37–42 (2013).

    Article  CAS  Google Scholar 

  325. Meuler A., McKinley G.H., and Cohen R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048–7052 (2010).

    Article  CAS  Google Scholar 

  326. Wang F., Li C., Lv Y., Lv F., and Du Y.: Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions. Cold Reg. Sci. Technol. 62, 29–33 (2010).

    Article  Google Scholar 

  327. Bahadur V., Mishchenko L., Hatton B., Taylor J., Aizenberg J., and Krupenkin T.: Predictive model for ice formation on superhydrophobic surfaces. Langmuir 27, 14143–14150 (2011).

    Article  CAS  Google Scholar 

  328. Sarshar M., Swarctz C., Hunter S., Simpson J., and Choi C-H.: Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions. Colloid Polym. Sci. 291, 427–435 (2012).

    Article  CAS  Google Scholar 

  329. Alizadeh A., Yamada M., Li R., Shang W., Otta S., Zhong S., Ge L., Dhinojwala A., Conway K., Bahadur V., Vinciquerra A., Stephens B., and Blohm M.L.: Dynamics of ice nucleation on water repellent surfaces. Langmuir 28, 3180–3186 (2012).

    Article  CAS  Google Scholar 

  330. Antonini C., Innocenti M., Horn T., Marengo M., and Amirfazli A.: Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg. Sci. Technol. 67, 58–67 (2011).

    Article  Google Scholar 

  331. Xiao J. and Chaudhuri S.: Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes. Langmuir 28, 4434–4446 (2012).

    Article  CAS  Google Scholar 

  332. Gorbunov B., Baklanov A., Kakutkina N., Windsor H.L., and Toumi R.: Ice nucleation on soot particles. J. Aerosol Sci. 32, 199–215 (2001).

    Article  CAS  Google Scholar 

  333. Maitra T., Tiwari M., Antonini C., Schoch P., Jung S., Eberle P., and Poulikakos D.: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14, 172–182 (2014).

    Article  CAS  Google Scholar 

  334. Bird J., Dhiman R., Kwon H.M., and Varanasi K.K.: Reducing the contact time of a bouncing drop. Nature 503, 385–388 (2013).

    Article  CAS  Google Scholar 

  335. Zhang Y., Yu X., Wu H., and Wu J.: Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects. Appl. Surf. Sci. 258, 8253–8257 (2012).

    Article  CAS  Google Scholar 

  336. Wilson P., Lu W., Xu H., Kim P., Kreder M., Alvarenga J., and Aizenberg J.: Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 15, 581–585 (2013).

    Article  CAS  Google Scholar 

  337. Rykaczewski K., Anand S., Subramanyam S.B., and Varanasi K.K.: Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29, 5230–5238 (2013).

    Article  CAS  Google Scholar 

  338. Lee H., Alcaraz M., Rubner M.F., and Cohen R.E.: Zwitter-wettability and antifogging coatings with frost-resisting capabilities. ACS Nano 7, 2172–2185 (2013).

    Article  CAS  Google Scholar 

  339. A nnual Energy Review 2011, U.S. Energy Information Administration, 2012.

    Google Scholar 

  340. Linnhoff B.: A User Guide on Process Integration for the Efficient Use of Energy (Institution of Chemical Engineers, Great Britain, 1994).

    Google Scholar 

  341. Marlino L.D.: Technology and Cost of the MY2007 Toyota Camry HEV - Final Report Oak Ridge National Laboratory, 2007.

    Google Scholar 

  342. Moreno G.: Section 5.7 Two-phase cooling technology for power electronics with novel coolants. In Advanced Power Electronics and Electric Motors Annual Progress Report, FY 2011, U.S. Department of Energy Office of Vehicle Technologies, 2012.

    Google Scholar 

  343. Thevenin R., Wu Z., Keller P., Cohen R., Clanet C., and Quere D.: New Thermal-Sensitive Superhydrophobic Material (Pittsburgh, PA, 2013).

    Google Scholar 

  344. Yi P., Khoshmanesh K., Chrimes A., Campbell J., Ghorbani K., Nahavandi S., Rosengarten G., and Kalantar-zadeh K.: Dynamic nanofin heat sinks. Adv. Energy Mater. 4, n/a-n/a (2014).

    Google Scholar 

  345. Agbaglah G., Delaux S., Fuster D., Hoepffner J., Josserand C., Popinet S., Ray P., Scardovelli R., and Zaleski S.: Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Mécanique 339, 194–207 (2011).

    Article  Google Scholar 

  346. Raj R., Kunkelmann C., Stephan P., Plawsky J., and Kim J.: Contact line behavior for a highly wetting fluid under superheated conditions. Int. J. Heat Mass Transfer 55, 2664–2675 (2012).

    Article  CAS  Google Scholar 

  347. Koumoutsakos P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457–487 (2005).

    Article  Google Scholar 

  348. Kim J.: Review of nucleate pool boiling bubble heat transfer mechanisms. Int. J. Multiphase Flow 35, 1067–1076 (2009).

    Article  CAS  Google Scholar 

  349. Law K-Y.: Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. J. Phys. Chem. Lett. 5, 686–688 (2014).

    Article  CAS  Google Scholar 

  350. Rykaczewski K., Paxson A., Staymates M., Walker M., Sun X., Anand S., Srinivasan S., McKinley G., Chinn J., Scott J.H.J., and Varanasi K.K.: Dropwise condensation of low surface tension fluids on omniphobic surfaces. Sci. Rep. 4, 4158 (4151–4158) (2014).

    Article  CAS  Google Scholar 

  351. Farhadi S., Farzaneh M., and Kulinich S.A.: Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257, 6264–6269 (2011).

    Article  CAS  Google Scholar 

  352. Wang Y., Xue J., Wang Q., Chen Q., and Ding J.: Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 5, 3370–3381 (2013).

    Article  CAS  Google Scholar 

  353. Zhang X., Kono H., Liu Z., Nishimoto S., Tryk D., Murakami T., Sakai H., Abe M., and Fujishima A.: A transparent and photo-patternable superhydrophobic film. Chem. Commun. 46, 4949–4951 (2007).

    Article  CAS  Google Scholar 

  354. Zhang M., Efremov M., Schiettekatte F., Olson E., Kwan A., Lai S., Wisleder T., Greene J.E., and Allen L.H.: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 10548–10557 (2000).

    Article  CAS  Google Scholar 

  355. Bott T.R.: Fouling of Heat Exchangers (Elsevier, New York, 1995).

    Google Scholar 

  356. Humplik T., Lee J., O’Hern S., Fellman B., Baig M., Hassan S., Atieh M., Rahman F., Laoui T., Karnik R., and Wang E.N.: Nanostructured materials for water desalination. Nanotechnol. 22, 292001 (2011).

    Article  CAS  Google Scholar 

  357. Choi C-H. and Kim C-J.: Green Tribology–Biomimetics, Energy Conservation, and Sustainability, Nosonovsky M. and Bhushan B. eds.; Springer: Heidelberg, Germany, 2012; pp. 79–104.

  358. Heo S., Koh J., Kang G., Ahn S., Chi W., Kim K., and Kim J.H.: Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects. Adv. Energy Mater. 4, n/a-n/a (2014).

    Google Scholar 

  359. Thome J.R.: Enhanced Boiling Heat Transfer (Hemisphere Publishing Corporation, New York, 1989).

    Google Scholar 

  360. Thome J.R.: Enhanced boiling of mixtures. Chem. Eng. Sci. 42, 1909–1917 (1987).

    Article  CAS  Google Scholar 

  361. Scardino A.J. and de Nys R.: Mini review: Biomimetic models and bioinspired surfaces for fouling control. Biofouling 27, 73–86 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DA and CMM acknowledge funding from NSF grants CBET-1066426, 1236030, and 1235867. The authors acknowledge insightful discussions with Gilbert Moreno and Sreekant Narumanchi from NREL, as well as with the participants of the 2013 International Workshop on Micro and Nano Structures for Phase Change Heat Transfer, organized by Yoav Peles (RPI) and Evelyn Wang (MIT). With his academic offspring CJK, the authors also acknowledge the exceptional mentoring of Art Bergles, a selfless leader in the community of enhanced heat transfer, who passed away in March 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Attinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attinger, D., Frankiewicz, C., Betz, A.R. et al. Surface engineering for phase change heat transfer: A review. MRS Energy & Sustainability 1, 4 (2014). https://doi.org/10.1557/mre.2014.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2014.9

Keywords

Navigation