Skip to main content

Advertisement

Log in

A review on direct methanol fuel cells–In the perspective of energy and sustainability

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

The direct methanol fuel cell (DMFC) enables the direct conversion of the chemical energy stored in liquid methanol fuel to electrical energy, with water and carbon dioxide as by-products. Compared to the more well-known hydrogen fueled polymer electrolyte membrane fuel cells (H 2 -PEMFCs), DMFCs present several intriguing advantages as well as a number of challenges.

This review examines the technological, environmental, and policy aspects of direct methanol fuel cells (DMFCs). The DMFC enables the direct conversion of the chemical energy stored in liquid methanol fuel to electrical energy, with water and carbon dioxide as byproducts. Compared to the more well-known hydrogen fueled PEMFCs, DMFCs present several intriguing advantages as well as a number of challenges. Factors impeding DMFC commercialization include the typically lower efficiency and power density, as well as the higher cost of DMFCs compared to H 2 -based fuel cells. Because of these issues, it is likely that DMFC technology will first be commercialized for small portable power applications (e.g., the displacement of batteries in consumer electronic applications), where the shorter product lifetimes (∼ 1–2 yrs for a battery versus 8–15 yrs for a car) and the much higher price points (∼ $10/W for a laptop battery vs. ∼ $0.05/W for a vehicle engine) provide a more attractive entry point. While such applications are not likely to significantly impact the global energy sustainability picture, they provide an important initial market for fuel cell technology. As such, in this review, we provide an overview of recent research and the challenges to the development of DMFCs for both the portable (shorter-term) and transport (longer-term) sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Table 1.
Figure 3.
Figure 4.
Figure 5.
Table 2.
Table 3.
Figure 6.
Figure 7
Table 4.
Figure 8.
Figure 9.
Table 5.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Similar content being viewed by others

References

  1. Van Vilet O., Brouwer A.S., Kuramochi T., van den Broek M., and Faaij A.: Energy use, cost and CO2 emissions of electric cars. J. Power Sources 196(4), 2298 (2011).

    Google Scholar 

  2. Dunn S.: Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 27(3), 235 (2002).

    CAS  Google Scholar 

  3. http://www.eea.europa.eu/themes/transport/.

  4. Bent R.D., Orr L., and Baker R.: Energy: Science, Policy, and the Pursuit of Sustainability (Island Press, Washington, DC, 2002).

    Google Scholar 

  5. Wang Y., Chen K.S., Mishler J., Cho S.C., and Adroher X.C.: A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 88(4), 981 (2011).

    CAS  Google Scholar 

  6. McNicol B.D., Rand D.A.J., and Williams K.R.: Fuel cells for road transportation purposes - Yes or no? J. Power Sources 100(1–2), 47 (2001).

    CAS  Google Scholar 

  7. Chan C.C.: The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 704 (2007).

    Google Scholar 

  8. Hydrogen. In Encyclopedia Britannica (1990).

  9. Ogden J.M., Steinbugler M.M., and Kreutz T.G.: A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: Implications for vehicle design and infrastructure development. J. Power Sources 79(2), 143 (1999).

    CAS  Google Scholar 

  10. Armaroli N. and Balzani V.: The hydrogen issue. ChemSusChem. 4(1), 21 (2011).

    CAS  Google Scholar 

  11. Dillon R., Srinivasan S., Arico A.S., and Antonucci V.: International activities in DMFC R&D: Status of technologies and potential applications. J. Power Sources 127(1–2), 112 (2004).

    CAS  Google Scholar 

  12. McNicol B.D., Rand D.A.J., and Williams K.R.: Direct methanol-air fuel cells for road transportation. J. Power Sources 83(1–2), 15 (1999).

    CAS  Google Scholar 

  13. Aricò A.S., Baglio V., and Antonucci V.: Direct methanol fuel Cells: History, status and perspectives. In Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 1.

    Google Scholar 

  14. Basak P.R., Kausshik N., and Biswas S.: Methanol as energy carrier. Search 13(2), (2010).

    Google Scholar 

  15. Olah G.A., Goeppert A., and Prakash G.K.S.: Beyond Oil and Gas: The Methanol Economy (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009).

    Google Scholar 

  16. Nichols R.J.: The methanol story: A sustainable fuel for the future. J. Sci. Ind. Res. 62(1–2), 97 (2003).

    CAS  Google Scholar 

  17. Mitchell D.: A note on rising food prices. Policy Research Working Paper 4682, (2008). http://econ.worldbank.org.

    Google Scholar 

  18. Bromberg L. and Cheng W.K.: Methanol as an Alternative Transportation Fuel in the US: Options for Sustainable and/or Energy-Secure Transportation. http://www.afdc.energy.gov/, (2010).

    Google Scholar 

  19. Adamson K-A. and Pearson P.: Hydrogen and methanol: A comparison of safety, economics, efficiencies and emissions. J. Power Sources 86(1–2), 548 (2000).

    CAS  Google Scholar 

  20. McGrath K.M., Prakash G.K.S., and Olah G.A.: Direct methanol fuel cells. J. Ind. Eng. Chem. 10, 1063 (2004).

    CAS  Google Scholar 

  21. Colpan C.O., Dincer I., and Hamdullahpur F.: Portable fuel cells–Fundamentals, technologies and applications. In Mini-Micro Fuel Cells: Fundamentals and Applications. NATO Science for Peace and Security Series. Kakac S., Pramuanjaroenkij A., and Vasiliev L. eds.; Springer: Netherlands, 2008; pp. 87–101.

    Google Scholar 

  22. Garche J., Stimming U., Friedrich A.K., Feidenhans’l R., Garche J., Stimming U., Friedrich A.K., and Feidenhans’l R.: Hydrogen in portable devices. In Risø Energy Report 3. Hydrogen and its Competitors, Sønderberg Petersen L. and Sønderberg Petersen L., eds.; Holman Center-Tryk: Holbaek, Denmark, 2004; p. 47.

    Google Scholar 

  23. Jung D-H., Jo Y-K., Jung J-H., Cho S-H., Kim C-S., and Shin D-R.: Proceedings Fuel Cell Seminar, (Portland, 2000); p. 420.

    Google Scholar 

  24. Chang H.: DMFC pack of 3.6 V-200 mW and its application in mobile electronics. In 2002 Small Fuel Cells, 4th Annual International Conference for Portable Power Applications, (Washington, DC, 2002).

    Google Scholar 

  25. Hockaday R.G.: Micro-fuel cells at the crossroads. In 2002 Small Fuel Cells, 4th Annual International Conference for Portable Power Applications, (Washington, DC, 2002).

    Google Scholar 

  26. Slade R.C.T., Kizewski J.P., Poynton S.D., Zeng R., and Varcoe J.R.: Alkaline membrane fuel cells. In Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology, Kreuer K-D. ed.; (Springer Science and Business Media, New York, 2013).

    Google Scholar 

  27. Iwasita T.: Methanol and CO electro-oxidation. In Handbook of Fuel Cells–Fundamentals, Technology and Applications, Vielstich W., Lamm A., and Gasteiger H.A., eds.; John Wiley & Sons: Chichester, UK, 2003; p. 603.

    Google Scholar 

  28. Ren X.M., Wilson M.S., and Gottesfeld S.: High performance direct methanol polymer electrolyte fuel cells. J. Electrochem. Soc. 143(1), L12 (1996).

    CAS  Google Scholar 

  29. Arico A.S., Creti P., Kim H., Mantegna R., Giordano N., and Antonucci V.: Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst. J. Electrochem. Soc. 143(12), 3950 (1996).

    CAS  Google Scholar 

  30. Shukla A.K., Christensen P.A., Hamnett A., and Hogarth M.P.: A vapor-feed direct-methanol fuel-cell with proton-exchange membrane electrolyte. J. Power Sources 55(1), 87 (1995).

    CAS  Google Scholar 

  31. Jiang R.Z., Rong C., and Chu D.R.: Determination of energy efficiency for a direct methanol fuel cell stack by a fuel circulation method. J. Power Sources 126(1–2), 119 (2004).

    CAS  Google Scholar 

  32. Gao L., Abeysiri M.C., and Winfield Z.C.: Evaluating the energy consumption and emissions of direct alcohol fuel cells. Int. J. Energy Sci. 2(5), 211 (2012).

    Google Scholar 

  33. Moore R.M., Gottesfeld S., and Zelenay P.: Control strategy to optimize the efficiency of a direct-methanol fuel cell for automotive applications. In Env 99 Alternative Fuels Conference & Exposition, Institute of Transportation Studies, University of California, Davis, 1999).

    Google Scholar 

  34. Shah K. and Besser R.S.: Key issues in the microchemical systems-based methanol fuel processor: Energy density, thermal integration, and heat loss mechanisms. J. Power Sources 166(1), 177 (2007).

    CAS  Google Scholar 

  35. Hebling C.: Portable fuel cell systems. Fuel Cells Bulletin 2002(7), 8–12 (2002).

    Google Scholar 

  36. Florez E. and Adolp M.: Batteries for portable ICT devices. In ICT-T TechWatch Alert February (2010). http://www.itu.int/ITU-T/techwatch.

    Google Scholar 

  37. Beden B., Kadirgan F., Lamy C., and Leger J.M.: Oxidation of methanol on a platinum-electrode in alkaline-medium: Effect of metal ad-atoms on the electrocatalytic activity. J. Electroanal. Chem. 142(1–2), 171 (1982).

    CAS  Google Scholar 

  38. Kunimatsu K.: Insitu infrared spectroscopic studies of methanol electrooxidation on Pt. Ber. Bunsen Phys. Chem. 94(9), 1025 (1990).

    CAS  Google Scholar 

  39. Prabhuram J. and Manoharan R.: Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J. Power Sources 74(1), 54 (1998).

    CAS  Google Scholar 

  40. Watanabe M. and Motoo S.: Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60(3), 267 (1975).

    CAS  Google Scholar 

  41. Goto S., Li N.N.Y., Senoo T., Noda K., Kudo Y., Maesaka A., and Hatazawa T.: PtRu nanoparticles catalytic activity enhanced by the ligand effect. MRS Proc. 1127-T07-01, 1127 (2008).

  42. Gotz M. and Wendt H.: Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim. Acta 43(24), 3637 (1998).

    CAS  Google Scholar 

  43. Mukerjee S. and Urian R.C.: Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: Electrochemical and in situ synchrotron spectroscopy. Electrochim. Acta 47(19), 3219 (2002).

    CAS  Google Scholar 

  44. Prabhuram J. and Manoharan R.: Electro-oxidation of methanol on porous unsupported Pt-Ru alloy electrodes in strong alkali and strong acid. Portugaliae Electrochim. Acta 16, 181 (1998).

    CAS  Google Scholar 

  45. Zhou W.J., Zhou B., Li W.Z., Zhou Z.H., Song S.Q., Sun G.Q., Xin Q., Douvartzides S., Goula A., and Tsiakaras P.: Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J. Power Sources 126(1–2), 16 (2004).

    CAS  Google Scholar 

  46. Ralph T.R. and Hogarth M.P.: Catalysis for low temperature fuel cells, Part II: The anode challenges. Platinum Met. Rev. 46(3), 117 (2002).

    CAS  Google Scholar 

  47. Prakash G.K.S., Krause F.C., Viva F.A., Natrayanan S.R., and Olah G.A.: Study of operating conditions and cell design on the performance of alkaline anion exchange membrane based direct methanol fuel cells. J. Power Sources 196(19), 7967 (2011).

    CAS  Google Scholar 

  48. Joghee P., Pylypenko S., Wood K., Bender G., and O’Hayre R.: High-performance alkaline direct methanol fuel cell using a nitrogen-postdoped anode. ChemSusChem. 7(7), 1854 (2014).

    CAS  Google Scholar 

  49. Lizcano-Valbuena W.H., Bortholin E.C., Neto A.O., Paganin V.A., and Gonzalez E.R.: A direct methanol fuel cells with Pt alloys with Ru, Mo, W and Os as anode catalyst. Meeting Abstracts, The Electrochemical Society, Pennington, NJ, 2001.

    Google Scholar 

  50. Salgado J.R.C., Paganin V.A., Gonzalez E.R., Montemor M.F., Tacchini I., Anson A., Salvador M.A., Ferreira P., Figueiredo F.M.L., and Ferreira M.G.S.: Characterization and performance evaluation of Pt-Ru electrocatalysts supported on different carbon materials for direct methanol fuel cells. Int. J. Hydrogen Energy 38(2), 910 (2013).

    CAS  Google Scholar 

  51. Qi J., Jiang L., Tang Q., Zhu S., Wang S., Yi B., and Sun G.: Synthesis of graphitic mesoporous carbons with different surface areas and their use in direct methanol fuel cells. Carbon 50(8), 2824 (2012).

    CAS  Google Scholar 

  52. Prabhuram J., Zhao T.S., Tang Z.K., Chen R., and Liang Z.X.: Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J. Phys. Chem. B 110(11), 5245 (2006).

    CAS  Google Scholar 

  53. Chai G.S., Yoon S.B., Kim J.H., and Yu J.S.: Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chem. Commun. (23), 2766 (2004).

    Google Scholar 

  54. Bong S., Kim Y.R., Kim I., Woo S., Uhm S., Lee J., and Kim H.: Preparation and electrochemical performance of Pt/graphene nanocomposites. Electrochem. Commun. 11, 846 (2009).

    Google Scholar 

  55. Kang S., Lim S., Peck D.H., Kim S.K., Jung D.H., Hong S.H., Jung H.G., and Shul Y.: Stability and durability of PtRu catalysts supported on carbon nanofibers for direct methanol fuel cells. Int. J. Hydrogen Energy 37(5), 4685 (2012).

    CAS  Google Scholar 

  56. Zhou Y.K., Neyerlin K., Olson T.S., Pylypenko S., Bult J., Dinh H.N., Gennett T., Shao Z.P., and O’Hayre R.: Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3(10), 1437 (2010).

    CAS  Google Scholar 

  57. Wood K.N., Pylypenko S., Olson T.S., Dameron A.A., O’Neill K., Christensen S.T., Dinh H.N., Gennett T., and O’Hayre R.: Effect of halide-modified model carbon supports on catalyst stability. ACS Appl. Mater. Interfaces 4(12), 6727 (2012).

    Google Scholar 

  58. Pylypenko S., Queen A., Olson T.S., Dameron A., O’Neill K., Neyerlin K.C., Pivovar B., Dinh H.N., Ginley D.S., Gennett T., and O’Hayre R.: Tuning carbon-based fuel cell catalyst support structures via nitrogen functionalization. II. Investigation of durability of Pt-Ru nanoparticles supported on highly oriented pyrolytic graphite model catalyst supports as a function of nitrogen implantation dose. J. Phys. Chem. C 115(28), 13676 (2011).

    CAS  Google Scholar 

  59. Kolla P., Kerce K., Normah Y., Fong H., and Smirnova A.: Metal oxides modified mesoporous carbon supports as anode catalysts in DMFC. ECS Trans. 45(21), 35 (2013).

    Google Scholar 

  60. Olson T.S., Dameron A.A., Wood K., Pylpenko S., Hurst K.E., Christensen S., Bult J.B., Ginley D.S., O’Hayre R., Dinh H., and Gennett T.: Enhanced fuel cell catalyst durability with nitrogen modified carbon supports. J. Electrochem. Soc. 160(4), F389 (2013).

    CAS  Google Scholar 

  61. Corpuz A.R., Olson T.S., Joghee P., Pylypenko S., Dameron A.A., Dinh H.N., O’Neill K.J., Hurst K.E., Bender G., Gennett T., Pivovar B.S., Richards R.M., and O’Hayre R.P.: Effect of a nitrogen-doped PtRu/carbon anode catalyst on the durability of a direct methanol fuel cell. J. Power Sources 217, 142 (2012).

    CAS  Google Scholar 

  62. Joghee P., Pylypenko S., Olson T.S., Dameron A., Corpuz A., Dinh H.N., Wood K., O’Neill K., Hurst K., Bender G., Gennett T., Pivovar B., and O’Hayre R.: Enhanced stability of PtRu supported on N-doped carbon for the anode of a DMFC. J. Electrochem. Soc. 159(11), F768 (2012).

    CAS  Google Scholar 

  63. Corpuz A.R., Wood K.N., Pylypenko S., Demeron A., Joghee P., Olson T.S., Bender G., Dinh H.N., Gennett T., and Richards R.M.: Effect of nitrogen post-doping on a commercial platinum–ruthenium/carbon anode catalyst. J. Power Sources 248, 296 (2014).

    CAS  Google Scholar 

  64. Ralph T.R. and Hogarth M.P.: Catalysis for low temperature fuel cells part I: The cathode challenges. Platinum Met. Rev. 46(1), 3 (2002).

    CAS  Google Scholar 

  65. Prabhuram J., Zhao T.S., and Yang H.: Methanol adsorbates on the DMFC cathode and their effect on the cell performance. J. Electroanal. Chem. 578(1), 105 (2005).

    CAS  Google Scholar 

  66. Casalegno A., Bresciani F., Zago M., and Marchesi R.: Experimental investigation of methanol crossover evolution during direct methanol fuel cell degradation tests. J. Power Sources 249, 103 (2014).

    CAS  Google Scholar 

  67. Li W.Z., Xin Q., and Yan Y.S.: Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: The effect of catalyst composition. Int. J. Hydrogen Energy 35(6), 2530 (2010).

    CAS  Google Scholar 

  68. Xu J.B., Zhao T.S., Yang W.W., and Shen S.Y.: Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells. Int. J. Hydrogen Energy 35(16), 8699 (2010).

    CAS  Google Scholar 

  69. Antolini E., Salgado J.R.C., Santos L.G.R.A., Garcia G., Ticianelli E.A., Pastor E., and Gonzalez E.R.: Carbon supported Pt-Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells. J. Appl. Electrochem. 36(3), 355 (2006).

    CAS  Google Scholar 

  70. Nishanth K.G., Sridhar P., Pitchumani S., and Shukla A.K.: A DMFC with methanol-tolerant-carbon-supported-Pt-Pd-alloy cathode. J. Electrochem. Soc. 158(8), B871 (2011).

    CAS  Google Scholar 

  71. Meng H., Shen P.K., Wei Z.D., and Jiang S.P.: Improved performance of direct methanol fuel cells with tungsten carbide promoted Pt/C composite cathode electrocatalyst. Electrochem. Solid-State Lett. 9(7), A368 (2006).

    CAS  Google Scholar 

  72. Antolini E., Salgado J.R.C., and Gonzalez E.R.: The stability of Pt-m (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt-Co catalyst. J. Power Sources 160(2), 957 (2006).

    CAS  Google Scholar 

  73. Wei Z.D., Guo H.T., and Tang Z.Y.: Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction: Influence on corrosion resistance and particle size. J. Power Sources 62(2), 233 (1996).

    CAS  Google Scholar 

  74. Xiong L. and Manthiram A.: Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J. Electrochem. Soc. 152(4), A697 (2005).

    CAS  Google Scholar 

  75. Reeve R.W., Christensen P.A., Hamnett A., Haydock S.A., and Roy S.C.: Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. J. Electrochem. Soc. 145(10), 3463 (1998).

    CAS  Google Scholar 

  76. Sun G.Q., Wang J.T., and Savinell R.F.: Iron(III) tetramethoxyphenylporphyrin (FeTMPP) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel cells. J. Appl. Electrochem. 28(10), 1087 (1998).

    CAS  Google Scholar 

  77. Bunazawa H. and Yamazaki Y.: Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells. J. Power Sources 190(2), 210 (2009).

    CAS  Google Scholar 

  78. Jiang L., Hsu A., Chu D., and Chen R.: Oxygen reduction reaction on carbon supported Pt and Pd in alkaline solutions. J. Electrochem. Soc. 156(3), B370 (2009).

    CAS  Google Scholar 

  79. Furuya N. and Aikawa H.: Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells. Electrochim. Acta 45(25–26), 4251 (2000).

    CAS  Google Scholar 

  80. Okajima K., Nabekura K., Kondoh T., and Sudoh M.: Degradation evaluation of gas-diffusion electrodes for oxygen-depolarization in chlor-alkali membrane cell. J. Electrochem. Soc. 152(8), D117 (2005).

    CAS  Google Scholar 

  81. Arico A.S., Srinivasan S., and Antonucci V.: DMFCs: From fundamental aspects to technology development. Fuel Cells 1(2), 133 (2001).

    CAS  Google Scholar 

  82. Agro S., DeCarmine T., DeFelice S., and Thoma L.: Annual progress report for the DOE hydrogen program, US Department of Energy (DOE). website: http://www.hydrogen.energy.gov.

  83. Howell J.: Keynote Paper The Fifth International Membrane Science & Technology Conference (IMSTEC ‘03), Sydney, Australia, November 10–14, (2003).

    Google Scholar 

  84. Reeve R.W.:Update on Status of Direct Methanol Fuel Cells (Harwell Laboratory, Energy Technology Support Unit, Fuel cells Programme, 2002).

    Google Scholar 

  85. Piela P., Eickes C., Brosha E., Garzon F., and Zelenay P.: Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J. Electrochem. Soc. 151(12), A2053 (2004).

    CAS  Google Scholar 

  86. Antonucci P.L., Arico A.S., Creti P., Ramunni E., and Antonucci V.: Investigation of a direct methanol fuel cell based on a composite Nafion (R)-silica electrolyte for high temperature operation. Solid State Ionics 125(1–4), 431 (1999).

    CAS  Google Scholar 

  87. Dimitrova P., Friedrich K.A., Stimming U., and Vogt B.: Modified Nafion((R))-based membranes for use in direct methanol fuel cells. Solid State Ionics 150(1–2), 115 (2002).

    CAS  Google Scholar 

  88. Liu J., Wang H.T., Cheng S., and Chan K.Y.: Nafion-polyfurfuryl alcohol nanocomposite membranes with low methanol permeation. Chem. Commun. (6), 728 (2004).

    Google Scholar 

  89. Jang R.C., Kunz H.R., and Fenton J.M.: Composite silica/Nafion membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells. J. Membr. Sci. 272, 116 (2006).

    Google Scholar 

  90. Kim Y.S., Sumner M.J., Harrison W.L., Riffle J.S., McGrath J.E., and Pivovar B.S.: Direct methanol fuel cell performance of disulfonated poly-(arylene ether benzonitrile) copolymers. J. Electrochem. Soc. 151(12), A2150 (2004).

    CAS  Google Scholar 

  91. Wang J.T., Wainright J.S., Savinell R.F., and Litt M.: A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte. J. Appl. Electrochem. 26(7), 751 (1996).

    CAS  Google Scholar 

  92. Yang C., Srinivasan S., Aricò A.S., Cretı` P., Baglio V., and Antonucci V.: Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem. Solid-State Lett. 4(4), A31 (2001).

    CAS  Google Scholar 

  93. Li L., Zhang J., and Wang Y.: Sulfonated polyether ether membranes cured with different methods for direct methanol fuel cells. J. Mater Sci. Lett. 22, 1595 (2003).

    CAS  Google Scholar 

  94. Yu E.H. and Scott K.: Development of direct methanol alkaline fuel cells using anion exchange membranes. J. Power Sources 137(2), 248 (2004).

    CAS  Google Scholar 

  95. Yu E.H., Krewer U., and Scott K.: Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3(8), 1499 (2010).

    CAS  Google Scholar 

  96. Varcoe J.R., Slade R.C., Yee E.L.H., Poynton S.D., and Driscoll D.J.: Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. J. Power Sources 173(1), 194 (2007).

    CAS  Google Scholar 

  97. Xiong Y., Liu Q.L., and Zeng Q.H.: Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells. J. Power Sources 193(2), 541 (2009).

    CAS  Google Scholar 

  98. Li L. and Wang Y.X.: Quaternized polyethersulfone cardo anion exchange membranes for direct methanol alkaline fuel cells. J. Membr. Sci. 262(1–2), 1 (2005).

    CAS  Google Scholar 

  99. Xiong Y., Fang J., Zeng Q.H., and Liu Q.L.: Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J. Membr. Sci. 311(1–2), 319 (2008).

    CAS  Google Scholar 

  100. Xiong Y., Liu Q.L., Zhang Q.G., and Zhu A.M.: Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J. Power Sources 183(2), 447 (2008).

    CAS  Google Scholar 

  101. Xiong Y., Liu Q.L., Zhu A.M., Huang S.M., and Zeng Q.H.: Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J. Power Sources 186(2), 328 (2009).

    CAS  Google Scholar 

  102. Yang C-C., Chiu S-J., Lee K-T., Chien W-C., Lin C-T., and Huang C-A.: Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J. Power Sources 184(1), 44 (2008).

    CAS  Google Scholar 

  103. Wu L., Xu T., Wu D., and Zheng X.: Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell. J. Membr. Sci. 310(1–2), 577 (2008).

    CAS  Google Scholar 

  104. Wu L. and Xu T.: Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J. Membr. Sci. 322(2), 286 (2008).

    CAS  Google Scholar 

  105. Hou H.Y., Sun G.Q., He R.H., Sun B.Y., Jin W., Liu H., and Xin Q.: Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell. Int. J. Hydrogen Energy 33(23), 7172 (2008).

    CAS  Google Scholar 

  106. Lindermeir A., Rosenthal G., Kunz U., and Hoffmann U.: On the question of MEA preparation for DMFCs. J. Power Sources 129(2), 180 (2004).

    CAS  Google Scholar 

  107. Tang H.L., Wang S.L., Pan M., Jiang S.P., and Ruan Y.Z.: Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane (CCM). Electrochim. Acta 52(11), 3714 (2007).

    CAS  Google Scholar 

  108. Zhang J., Yin G.P., Wang Z.B., and Shao Y.Y.: Effects of MEA preparation on the performance of a direct methanol fuel cell. J. Power Sources 160(2), 1035 (2006).

    CAS  Google Scholar 

  109. Pak C., You G.P., Choi K.H., and Chang H.: High performance membrane electrode assemblies by optimization of processes and supported catalysts. In Hydrogen Energy-Challenges and Perspectives, Intech: 2012; Chapter 10.

    Google Scholar 

  110. Cho J.H., Kim J.M., Prabhuram J., Hwang S.Y., Ahn D.J., Ha H.Y., and Kim S-K.: Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells. J. Power Sources 187(2), 378 (2009).

    CAS  Google Scholar 

  111. You D., Lee Y., Cho H., Kim J-H., Pak C., Lee G., Park K-Y., and Park J-Y.: High performance membrane electrode assemblies by optimization of coating process and catalyst layer structure in direct methanol fuel cells. Int. J. Hydrogen Energy 36(8), 5096 (2011).

    CAS  Google Scholar 

  112. Iwastia T. and Vielstich W.: New in-situ results on adsorption and oxidation of methanol on platinum in acid solution. J. Electroanal. Chem. 250, 451 (1988).

    Google Scholar 

  113. Lamy C., Léger J-M., and Srinivasan S.: Direct methanol fuel Cells: From a twentieth century electrochemist’s dream to a twenty-first century emerging technology. In Modern Aspects of Electrochemistry, Bockris J.O.M., Conway B.E., and White R. eds.; Springer: US, 2002; p. 53.

    Google Scholar 

  114. Kordesch K.V. and Simader G.R.: Fuel Cells and Their Applications (Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2006).

    Google Scholar 

  115. Surampudi S., Narayanan S.R., Vamos E., Frank H., Halpert G., LaConti A., Kosek J., Prakash G.K.S., and Olah G.A.: Advances in direct oxidation methanol fuel cells. J. Power Sources 47(3), 377 (1994).

    CAS  Google Scholar 

  116. Hwan Jung D., Hyeong Lee C., Soo Kim C., and Ryul Shin D.: Performance of a direct methanol polymer electrolyte fuel cell. J. Power Sources 71(1–2), 169 (1998).

    CAS  Google Scholar 

  117. Liu G., Wang M., Wang Y., Ye F., Wang T., Tian Z., and Wang X.: Anode catalyst layer with novel microstructure for a direct methanol fuel cell. Int. J. Hydrogen Energy 37(10), 8659 (2012).

    CAS  Google Scholar 

  118. Joghee P., Pylypenko S., Wood K., Corpuz A., Bender G., Dinh H.N., and O’Hayre R.: Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential. J. Power Sources 245, 37 (2014).

    CAS  Google Scholar 

  119. Liu J.G., Zhou Z.H., Zhao X.X., Xin Q., Sun G.Q., and Yi B.L.: Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. Phys. Chem. Chem. Phys. 6(1), 134 (2004).

    CAS  Google Scholar 

  120. Guo J., Sun G., Wu Z., Sun S., Yan S., Cao L., Yan Y., Su D., and Xin Q.: The durability of polyol-synthesized PtRu/C for direct methanol fuel cells. J. Power Sources 172(2), 666 (2007).

    CAS  Google Scholar 

  121. Wang Z-B., Rivera H., Wang X-P., Zhang H-X., Feng P-X., Lewis E.A., and Smotkin E.S.: Catalyst failure analysis of a direct methanol fuel cell membrane electrode assembly. J. Power Sources 177(2), 386 (2008).

    CAS  Google Scholar 

  122. Prabhuram J., Krishnan N.N., Choi B., Lim T-H., Ha H.Y., and Kim S-K.: Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane. Int. J. Hydrogen Energy 35(13), 6924 (2010).

    CAS  Google Scholar 

  123. Park J-Y., Scibioh M.A., Kim S-K., Kim H-J., Oh I-H., Lee T.G., and Ha H.Y.: Investigations of performance degradation and mitigation strategies in direct methanol fuel cells. Int. J. Hydrogen Energy 34(4), 2043 (2009).

    CAS  Google Scholar 

  124. Park J.Y., Kim J.H., Seo Y., Yu D.J., Cho H., and Bae S.J.: Operating temperature dependency on performance degradation of direct methanol fuel cells. Fuel Cells 12(3), 426 (2012).

    CAS  Google Scholar 

  125. Dohle H., Schmitz H., Bewer T., Mergel J., and Stolten D.: Development of a compact 500 W class direct methanol fuel cell stack. J. Power Sources 106(1–2), 313 (2002).

    CAS  Google Scholar 

  126. Xie C., Bostaph J., and Pavio J.: Development of a 2 W direct methanol fuel cell power source. J. Power Sources 136(1), 55 (2004).

    CAS  Google Scholar 

  127. Kim D., Lee J., Lim T-H., Oh I-H., and Ha H.Y.: Operational characteristics of a 50 W DMFC stack. J. Power Sources 155(2), 203 (2006).

    CAS  Google Scholar 

  128. Park Y-C., Peck D-H., Kim S-K., Lim S., Jung D-H., Jang J-H., and Lee D-Y.: Dynamic response and long-term stability of a small direct methanol fuel cell stack. J. Power Sources 195(13), 4080 (2010).

    CAS  Google Scholar 

  129. Kang S., Jung D., Shin J., Lim S., Kim S.K., Shul Y., and Peck D.H.: Long-term durability of radiation-grafted PFA-g-PSSA membranes for direct methanol fuel cells. J. Membr. Sci. 447, 36 (2013).

    CAS  Google Scholar 

  130. Matsuoka K., Iriyama Y., Abe T., Matsuoka M., and Ogumi Z.: Alkaline direct alcohol fuel cells using an anion exchange membrane. J. Power Sources 150, 27 (2005).

    CAS  Google Scholar 

  131. Scott K., Yu E., Vlachogiannopoulos G., Shivare M., and Duteanu N.: Performance of a direct methanol alkaline membrane fuel cell. J. Power Sources 175(1), 452 (2008).

    CAS  Google Scholar 

  132. Kim H., Shin S-J., Park Y-G., Song J., and Kim H-T.: Determination of DMFC deterioration during long-term operation. J. Power Sources 160(1), 440 (2006).

    CAS  Google Scholar 

  133. Kim Y.S. and Pivovar B.S.: Durability of membrane-electrode interface under DMFC operating conditions. ECS Trans. 1(8), 457 (2006).

    CAS  Google Scholar 

  134. Kang S., Jung D.H., Shin J., Kim S.K., Shul Y., and Peck D.H.: Performance and durability of MEA prepared with crosslinked ETFE-g-PSSA(DVB) membranes for direct methanol fuel cells using high concentration methanol. J. Membr. Sci. 459, 12 (2014).

    CAS  Google Scholar 

  135. Chin X-G., Yan P-Y., and Wang C-P.: Enhancement of durability and performance in direct methanol fuel cell by a microporous layer with ultra-small pores. ECS Trans. 26(1), 295 (2010).

    CAS  Google Scholar 

  136. Park J-Y., Seo Y., Kang S., You D., Cho H., and Na Y.: Operational characteristics of the direct methanol fuel cell stack on fuel and energy efficiency with performance and stability. Int. J. Hydrogen Energy 37(7), 5946 (2012).

    CAS  Google Scholar 

  137. Kim J., Momma T., and Osaka T.: Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J. Power Sources 189(2), 999 (2009).

    CAS  Google Scholar 

  138. Kim J-H., Kim H-K., Hwang K-T., and Lee J-Y.: Performance of air-breathing direct methanol fuel cell with anion-exchange membrane. Int. J. Hydrogen Energy 35(2), 768 (2010).

    CAS  Google Scholar 

  139. Bunazawa H. and Yamazaki Y.: Influence of anion ionomer content and silver cathode catalyst on the performance of alkaline membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs). J. Power Sources 182(1), 48 (2008).

    CAS  Google Scholar 

  140. Ren X., Zelenay P., Thomas S., Davey J., and Gottesfeld S.: Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 86(1–2), 111 (2000).

    CAS  Google Scholar 

  141. Joh H-I., Hwang S.Y., Cho J.H., Ha T.J., Kim S-K., Moon S.H., and Ha H.Y.: Development and characteristics of a 400 W-class direct methanol fuel cell stack. Int. J. Hydrogen Energy 33(23), 7153 (2008).

    CAS  Google Scholar 

  142. Chen C-Y. and Cha H-C.: Strategy to optimize cathode operating conditions to improve the durability of a direct methanol fuel cell. J. Power Sources 200, 21 (2012).

    CAS  Google Scholar 

  143. Park Y-C., Peck D-H., Kim S-K., Lim S., Lee D-Y., Ji H., and Jung D-H.: Operation characteristics of portable direct methanol fuel cell stack at sub-zero temperatures using hydrocarbon membrane and high concentration methanol. Electrochim. Acta 55(15), 4512 (2010).

    CAS  Google Scholar 

  144. Manokaran A., Vijayakumar R., Thomman T.N., Sridhar P., Pitchumani S., and Shukla A.K.: A self-supported 40 W direct methanol fuel cell system. J. Chem. Sci. 123(3), 343 (2011).

    CAS  Google Scholar 

  145. Bae B., Kho B.K., Lim T-H., Oh I-H., Hong S-A., and Ha H.Y.: Performance evaluation of passive DMFC single cells. J. Power Sources 158(2), 1256 (2006).

    CAS  Google Scholar 

  146. Liu J.G., Zhao T.S., Liang Z.X., and Chen R.: Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. J. Power Sources 153(1), 61 (2006).

    CAS  Google Scholar 

  147. Guo Z. and Faghri A.: Development of planar air breathing direct methanol fuel cell stacks. J. Power Sources 160(2), 1183 (2006).

    CAS  Google Scholar 

  148. Tsujiguchi T., Abdelkareem M.A., Yoshitoshi T., Nobuyoshi N., Shimizu T., Sato M., and Matsuda M.: Fabrication of 2 W passive DMFC operating with high concentration methanol. In Proceedings of Power MEMS Sendai, Japan, 2008; pp. 321.

    Google Scholar 

  149. Nakagawa N., Tsujiguchi T., Sakurai S., and Aoki R.: Performance of an active direct methanol fuel cell fed with neat methanol. J. Power Sources 219, 325 (2012).

    CAS  Google Scholar 

  150. Zhu Y., Liang J., Liu C., Ma T., and Wang L.: Development of a passive direct methanol fuel cell (DMFC) twin-stack for long-term operation. J. Power Sources 193(2), 649 (2009).

    CAS  Google Scholar 

  151. Li X. and Faghri A.: Development of a direct methanol fuel cell stack fed with pure methanol. Int. J. Hydrogen Energy 37(19), 14549 (2012).

    CAS  Google Scholar 

  152. Yomogita H. and Electronics N.: Panasonic develops Li-ion rechargeable battery with greatly increased capacity. In Nikkei Technology (2007).

    Google Scholar 

  153. Anthony S.: At long last, new lithium battery tech actually arrives on the market (and might be in your smart phone). In Extreme Tech News Letter (2014).

    Google Scholar 

  154. Stone C.: Fuel cell technologies powering portable electronic devices. Fuel Cells Bulletin 2007(10), 12 (2007).

    Google Scholar 

  155. Gottesfeld S.: DMFCs power up for portable devices. The Fuel Cell Rev. 1, 25 (2004).

    Google Scholar 

  156. Dyer C.K.: Fuel cells for portable applications. J. Power Sources 106(1–2), 31 (2002).

    CAS  Google Scholar 

  157. Samsung fuel cell to power laptop for a month pop. www.sait.samsung.co.kr.

  158. http://www.researchandmarkets.com/research/944b57/direct_methanol_fu.

  159. Eustis S.: Direct Methanol Fuel Cells (DMFC): Extends Power Efficiency for Portable Electronic Devices–Markets Reach $1.1 Billion by 2016 (WinterGreen Research, Inc., Lexington, MA, 2008); p. 1.

    Google Scholar 

  160. Bostaph J., Korpella R., Fisher A., Zindel D., and Hallmark J.: Microfluidic fuel delivery system for 100 mW DMFC. In Proceedings of the 199th Meeting on Direct Methanol Fuel Cell, (Washington, DC, 2001).

    Google Scholar 

  161. Hockaday R.G.: Surface replica fuel cell for micro fuel cell electrical power pack. US Patent No. 5,759,712, (1998).

    Google Scholar 

  162. Dohle H., Mergel J., Scharmann H., and Schmitz H.: Development of an air-breathing 50 W direct methanol fuel cell stack. In Proceedings of the 199th Meeting Direct Methanol Fuel Cell Symposium, (Washington, DC, 2001).

    Google Scholar 

  163. Yomogita H.: Sony unveils ultra-small hybrid fuel cell. (2008). http://techon.nikkeibp.co.jp/english/NEWS_EN/20080502/151303/.

    Google Scholar 

  164. Witham C.K., Chun W., Valdez T.I., and Narayanan S.R.: Performance of direct methanol fuel cells with sputter - deposited anode catalyst layers. Electrochem. Solid-State Lett. 3(11), 497 (2000).

    CAS  Google Scholar 

  165. Samsung unveils fuel cell-equipped laptop docking station, Technews World, 2006.

  166. http://www.electronista.com.

  167. The smart way to get DMFC products into the market. Fuel Cells Bulletin 2003(9), 10 (2003).

  168. Cristiani J. and Sifer N.: Test and evaluation of the smart fuel cell C20-MP direct methanol fuel cell system as a soldier power source. (2005).

    Google Scholar 

  169. SFC smart fuel cell environmental power supply. In Security Solutions (2008).

  170. Boehm C.: SFC’s direct methanol fuel cells, Joint Service Power Expo, (2009). www.sfc.com.

    Google Scholar 

  171. www/neahpower.com/tech-oursolution.

  172. Cross T., Reiman D., and D’Couto C.: Development of porous silicon based direct methanol fuel cells with nitric acid as liquid oxidant for portable applications, In Wires Energy and Environment, 4(2),(2015).

    Google Scholar 

  173. McConnell V.P.: Fuel cells feed power-hungry portable electronics. Fuel Cells Bulletin 2009(6), 12 (2009).

    Google Scholar 

  174. MTI chief says micro fuel cell might still hold some power. In Albany Business Review (2013).

  175. Toshiba launches direct methanol fuel cell in Japan as external power sources for mobile electronic devices, http://www.toshiba.co.jp/about/press/2009_10/pr2201.htm.

  176. T. Smith Toshiba touts fuel cell-equipped MP3 player, http:www.theregister.co.uk/2005/09/16/Toshiba ful cell MP3 players/.

  177. Li X. and Faghri A.: Review and advances of direct methanol fuel cells (DMFCs) part I: Design, fabrication, and testing with high concentration methanol solutions. J. Power Sources 226, 223 (2013).

    CAS  Google Scholar 

  178. http://www.chips.toshiba.com.

  179. Kariastsumari K.. Sony explains high output of ultra-small fuel-cell system. http://techon.nikkeibp.co.jp/english/NEWS_EN/20080507/151383/.

  180. On the road with methanol: The present and future benefits of methanol fuel, Prepared for the Methanol Institute, http://www.methanol.org.

  181. Energy Information Administration: Alternative to Traditional Transportation Fuels 1998, DOE/EIA 0585(98), Washington, DC, (1998).

    Google Scholar 

  182. Methanol: The clear alternative for transportation, Methanol fuel and FFV technology. Available at http://www.methanol.org, (2011).

    Google Scholar 

  183. Lotus researches cars running on CO2-Exiges 270E Tri-fuel is the next stage of Lotus Engineering’s long-term sustainable, synthetic alcohol research, News release Lotus Engineering, (January, 2008).

  184. Alternative fuels for vehicles fleet demonstration program volume 3, Technical reports, NewYork State Energy Research and Development Authority, (1997).

  185. Cheng W.-H. and Kung H.H.: Methanol Production and Use (Marcel Dekker, New York, 2003).

    Google Scholar 

  186. Beyond the Internal Combustion Engine: The Promise of Methanol Fuel Cell Vehicles, http://www.methanol.org/.

  187. Armstrong A.: In Fuel Cell Technology Conference, (Chicago, IL, 1999).

    Google Scholar 

  188. Schaller K.V. and Gruber C.: Fuel cell drive and high dynamic energy storage systems — Opportunities for the future city bus. Fuel Cells Bulletin 3(27), 9 (2000).

    Google Scholar 

  189. Panik F.: Fuel cells for vehicle applications in cars - bringing the future closer. J. Power Sources 71(1–2), 36 (1998).

    CAS  Google Scholar 

  190. Lloyd A.C.: The California fuel cell partnership: An avenue to clean air. J. Power Sources 86(1–2), 57 (2000).

    CAS  Google Scholar 

  191. Folkesson A., Andersson C., Alvfors P., Alaküla M., and Overgaard L.: Real life testing of a hybrid PEM fuel cell bus. J. Power Sources 118(1–2), 349 (2003).

    CAS  Google Scholar 

  192. Davis C., Edelstein B., Evenson B., Breacher A., and Cox D.: Hydrogen fuel cell vehicle study, A report prepared for the panel on public affairs, American Physical Soc., (2003).

    Google Scholar 

  193. Mori D., Haraikawa N., Kobayashi N., Shinozawa T., Matsunaga T., Kubo H., Toh K., and Tsuzuki M.: High pressure metal hydride tank for fuel cell vehicles. In IPHE Intern. Hydrogen Storage Technology Conference, (Lucca, Italy, 2005).

    Google Scholar 

  194. Lipman T.: An overview of hydrogen production and storage systems with renewable hydrogen case studies. In Clean Energy State Alliance, (2011).

    Google Scholar 

  195. Harris D. Ballard Power Systems Inc.: News Release, November 9, 2000.

    Google Scholar 

  196. Zhang J., Colbow K.M., and Wilkinson D.P.: Ionomer impregnation of electrode substrates for improved fuel cell. US Patent No. 6, 187,467, (2001).

    Google Scholar 

  197. http://www.ird.dk/product.htm.

  198. Buttin D., Dupont M., Straumann M., Gille R., Dubois J.C., Ornelas R., Fleba G.P., Ramunni E., Antonucci V., Aricò A.S., Cretì P., Modica E., Pham-Thi M., and Ganne J.P.: Development and operation of a 150 W air-feed direct methanol fuel cell stack. J. Appl. Electrochem. 31(3), 275 (2001).

    CAS  Google Scholar 

  199. Baldauf M. and Preidel W.: Status of the development of a direct methanol fuel cell. J. Power Sources 84(2), 161 (1999).

    CAS  Google Scholar 

  200. Committee on climate change, building a low-carbon economy-the UK’s contribution to tackling climate change, UK, 2008.

  201. Baldauf M. and Preidel B.W.: Book of abstracts. In Proceedings of the Third International Symposium on Electrocatalysis: Workshop, Electrocatalysis in Direct and Indirect Methanol PEM Fuel Cells, Portoroz, Slovenia, (1999).

    Google Scholar 

  202. Baldauf M. and Preidel W.: Experimental results on the direct electrochemical oxidation of methanol in PEM fuel cells. J. Appl. Electrochem. 31(7), 781 (2001).

    CAS  Google Scholar 

  203. Yamaaha Motor Co: http://www.yamahamotor.co.jp/motorshow/html/0003.html.

  204. Yamaaha Motor Co: http://www.yamahamotor.co.jp.

  205. www.fz-juelich.de/iwv/iwv3/iwv/iwv3.

  206. www.neahpower.com.

  207. Steckmann K.: Extending EV range with direct methanol fuel cells. World Electric Vehicle J. 3, 1 (2009).

    Google Scholar 

  208. Malhotra S.: Onboard battery charging with Oorja’s DMFC for material handling vehicles. Fuel Cells Bulletin 2012(3), 12 (2012).

    Google Scholar 

  209. Gancs L., Hult B.N., Hakim N., and Mukerjee S.: The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochem. Solid State Lett. 10(9), B150 (2007).

    CAS  Google Scholar 

  210. Lima A., Coutanceau C., Leger J.M., and Lamy C.: Investigation of ternary catalysts for methanol electrooxidation. J. Appl. Electrochem. 31(4), 379 (2001).

    CAS  Google Scholar 

  211. Qi Z. and Kaufman A.: Open circuit voltage and methanol crossover in DMFCs. J. Power Sources 110(1), 177 (2002).

    CAS  Google Scholar 

  212. Wang J.T., Wasmus S., and Savinell R.F.: Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J. Electrochem. Soc. 143(4), 1233 (1996).

    CAS  Google Scholar 

  213. Scott K., Taama W.M., Argyropoulos P., and Sundmacher K.: The impact of mass transport and methanol crossover on the direct methanol fuel cell. J. Power Sources 83(1–2), 204 (1999).

    CAS  Google Scholar 

  214. Zelenay P., Brosha E., Davey J., Eickes C., Fields R., Garzon F., Neergat M., Pivovar B., Purdy G., Ramsey J., Rowley J., Wilson M., and Zhu Y.: Direct methanol fuel cells, In Hydrogen, Fuel cells, and Infrastructure Technologies, FY progress report, 1 (2003).

    Google Scholar 

  215. Fu Y.Z., Manthiram A., and Guiver M.D.: Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem. Commun. 8(8), 1386 (2006).

    CAS  Google Scholar 

  216. Fu Y.Z., Manthiram A., and Guiver M.D.: Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for DMFCs. Electrochem. Solid State Lett. 10(4), B70 (2007).

    CAS  Google Scholar 

  217. Fu Y.Z., Manthiram A., and Guiver M.D.: Acid-base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells. Electrochem. Commun. 9(5), 905 (2007).

    CAS  Google Scholar 

  218. Lee J.K., Li W., Manthiram A., and Guiver M.D.: Blend membranes based on acid-base interactions for operation at high methanol concentrations. J. Electrochem. Soc. 156(1), B46 (2009).

    CAS  Google Scholar 

  219. Manthiram A.: Materials and manufacturing challenges of direct methanol fuel cells. The WSTIAC Quarterly. 9, 69 (2010).

    Google Scholar 

  220. McLean G.F., Niet T., Prince-Richard S., and Djilali N.: An assessment of alkaline fuel cell technology. Int. J. Hydrogen Energy 27(5), 507 (2002).

    CAS  Google Scholar 

  221. Cifrain M. and Kordesch K.V.: Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J. Power Sources 127(1–2), 234 (2004).

    CAS  Google Scholar 

  222. Wang Y., Li L., Hu L., Zhuang L., Lu J., and Xu B.: A feasibility analysis for alkaline membrane direct methanol fuel cell: Thermodynamic disadvantages versus kinetic advantages. Electrochem. Commun. 5(8), 662 (2003).

    CAS  Google Scholar 

  223. Pourbaix M., Atlas D’equilibres Electrochimiques (Gautheie-Villars, Paris, 1963).

    Google Scholar 

  224. Chen W., Sun G., Liang Z., Mao Q., Li H., Wang G., Xin Q., Chang H., Pak C., and Seung D.: The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell. J. Power Sources 160(2), 933 (2006).

    CAS  Google Scholar 

  225. Antolini E.: The problem of Ru dissolution from Pt–Ru catalysts during fuel cell operation: Analysis and solutions. J. Solid State Electr. 15(3), 455 (2011).

    CAS  Google Scholar 

  226. Chang K-H. and Hu C-C.: Oxidative synthesis of RuOx nH2O with ideal capacitive characteristics for supercapacitors. J. Electrochem. Soc. 151(7), A958 (2004).

    CAS  Google Scholar 

  227. Park Y., Lee B., Kim C., Oh Y., Nam S., and Park B.: The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. J. Mater. Res. 24(09), 2762 (2009).

    CAS  Google Scholar 

  228. Chung Y., Pak C., Park G-S., Jeon W.S., Kim J-R., Lee Y., Chang H., and Seung D.: Understanding a degradation mechanism of direct methanol fuel cell using TOF-SIMS and XPS. J. Phys. Chem. C 112(1), 313 (2007).

    Google Scholar 

  229. Lai C-M., Lin J-C., Hsueh K-L., Hwang C-P., Tsay K-C., Tsai L-D., and Peng Y-M.: On the accelerating degradation of DMFC at highly anodic potential. J. Electrochem. Soc. 155(8), B843 (2008).

    CAS  Google Scholar 

  230. Lee K-S., Jeon T-Y., Yoo S.J., Park I-S., Cho Y-H., Kang S.H., Choi K.H., and Sung Y-E.: Effect of PtRu alloying degree on electrocatalytic activities and stabilities. Appl. Catal. B: Environmental 102(1–2), 334 (2011).

    CAS  Google Scholar 

  231. Hyun M-S., Kim S-K., Lee B., Peck D., Shul Y., and Jung D.: Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method. Catal. Today 132(1–4), 138 (2008).

    CAS  Google Scholar 

  232. Shimazaki Y., Kobayashi Y., Sugimasa M., Yamada S., Itabashi T., Miwa T., and Konno M.: Preparation and characterization of long-lived anode catalyst for direct methanol fuel cells. J. Colloid Interface Sci. 300(1), 253 (2006).

    CAS  Google Scholar 

  233. Tian J., Sun G., Jiang L., Yan S., Mao Q., and Xin Q.: Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells. Electrochem. Commun. 9(4), 563 (2007).

    CAS  Google Scholar 

  234. Cabello-Moreno N., Crabb E., Fisher J., Russell A., and Thompsett D.: Improving the stability of PtRu catalysts for DMFC. Meeting Abstracts, 216th Meeting, Abstract 983. The Electrochemical Society, Pennington, NJ. MA2009–02(10), (2009).

    Google Scholar 

  235. Wang S., Wang X., and Jiang S.P.: PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. Langmuir 24(18), 10505 (2008).

    CAS  Google Scholar 

  236. Park I-S., Li W., and Manthiram A.: Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells. J. Power Sources 195(20), 7078 (2010).

    CAS  Google Scholar 

  237. Zheng W., Suominen A., and Tuominen A.: Discussion on the challenges of DMFC catalyst loading process for mass production. Energy Procedia 28, 78 (2012).

    CAS  Google Scholar 

  238. Song S.Q., Liang Z.X., Zhou W.J., Sun G.Q., Xin Q., Stergiopoulos V., and Tsiakaras P.: Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance. J. Power Sources 145(2), 495 (2005).

    CAS  Google Scholar 

  239. Xie J., Garzon F., Zawodzinski T., and Smith W.: Ionomer segregation in composite MEAs and its effect on polymer electrolyte fuel cell performance. J. Electrochem. Soc. 151(7), A1084 (2004).

    CAS  Google Scholar 

  240. Park H.S., Cho Y.H., Cho Y.H., Park I.S., Jung N., Ahn M., and Sung Y.E.: Modified decal method and its related study of microporous layer in PEM fuel cells. J. Electrochem. Soc. 155(5), B455 (2008).

    CAS  Google Scholar 

  241. Krishnan N.N., Prabhuram J., Hong Y.T., Kim H.J., Yoon K., Ha H.Y., Lim T.H., and Kim S.K.: Fabrication of MEA with hydrocarbon based membranes using low temperature decal method for DMFC. Int. J. Hydrogen Energy 35(11), 5647 (2010).

    CAS  Google Scholar 

  242. http:www.etnews.co.kr/news/detail.html?id=200612290065.

  243. Dinh H. and Gennet T.: Novel approach to advanced direct methanol fuel cell anode catalysts. (2009); p. 1–12. http://www.1.eere.enrgy.gov/hydrogenans fuelcells/pdfs/dinh-gennet topic 5a dmfc nrel kickoff.pdf.

    Google Scholar 

  244. Technical Plans, Multi-year Research, Development and Demonstration Plan, Fuel cells (2012).

  245. http://www.methanol.org/.

  246. Aasberg-Petersen K., Nielsen C.S., Dybkjær I., and Perregaard J.: Large Scale Methanol Production from Natural Gas. http://www.topsoe.com/business_areas/methanol/Downloads.aspx.

  247. http://fuelfix.com/blog/2014/01/03/natural-gas-boom-spurs-methanol-rush/.

  248. Specht M., Bandi A., Baumgart F., Murray C.N., and Gretz J.: Synthesis of methanol from biomass/CO2 resources. In Greenhouse Gas Control Technologies, Eliasson B., Riemer P.W.F., and Wokaun A. eds.; Pergamon: Amsterdam, 1999; p. 723.

    Google Scholar 

  249. http://www.carbonrecycling.is/.

  250. Methanol, Health and Safety Guide (HSG 105): International Programme on Chemical Safety (IPCS). (1997). http://www.inchem.org/.

    Google Scholar 

  251. Evaluation of the Fate and Transport of Methanol in the Environment. http://www.methanol.org/Environment/Resources/Environment/MP-Methanol-Fate.aspx.

  252. Solvent miscibility Table, https://www.erowid.org/.

  253. http://alaskafisheries.noaa.gov/oil/.

  254. http://www.evostc.state.ak.us/index.cfm?FA=facts.QA.

  255. http://ocean.si.edu/gulf-oil-spill.

  256. http://www.bp.com/en/global/corporate/gulf-of-mexico-restoration/deepwater-horizon-accident-and-response.html.

  257. http://response.restoration.noaa.gov/deepwaterhorizon.

  258. http://www.arb.ca.gov/homepage.htm.

  259. http://www.epa.gov/otaq/standards/index.htm.

  260. https://www.gov.uk/government/publications/in-service-exhaust-emission-standards-for-road-vehicles.

  261. The Introduction of Euro 5 and Euro 6 Emissions Regulations for Light Passenger and Commercial Vehicles. http://www.rsa.ie/.

  262. http://transportpolicy.net/index.php?title=China:_Light-duty:_Emissions.

  263. https://www.dieselnet.com/standards/.

  264. http://www.arb.ca.gov/msprog/zevprog/zevprog.htm.

  265. http://www.hybrid-car.org/hybrid-car-emissions.html.

  266. Clean Alternative Fuels: Methanol. http://www.afdc.energy.gov/.

  267. Methanol Refueling Costs. http://www.afdc.energy.gov/.

  268. http://www.afdc.energy.gov/fuels/hydrogen_locations.html.

  269. Dangerous Goods Panel: Methanol Micro Fuel Cell. http://www.icao.int/safety/.

  270. Personal email correspondence with John A Paterson, JA Paterson, LLC, Lawyer.

  271. http://www.icao.int/safety/DangerousGoods/Pages/technical-instructions.aspx.

  272. http://www.phmsa.dot.gov/staticfiles/PHMSA/DownloadableFiles/Federal%20Register/Hazmat/HM-215J%20Final%20Rule%2012-30-08.pdf.

  273. http://www.tsa.gov/traveler-information/3-1-1-carry-ons.

  274. http://www.oecd.org/env/45575666.pdf.

  275. Analysis of the Scope of Energy Subsidies and Suggestions for the G-20 Initiative, http://www.oecd.org/env/.

  276. http://www.energy.senate.gov/public/index.cfm/2012/3/clean-energy-standard-act-of-2012.

  277. http://www.bloomberg.com/news/2010-07-01/india-to-raise-535-million-from-tax-on-coal-output-this-year-ramesh-says.html.

  278. http://www.koreatimes.co.kr/www/news/biz/2008/11/123_29803.html.

  279. http://www.env.go.jp/en/policy/tax/env-tax.html.

  280. http://sapiens.revues.org/1072.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan O’Hayre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joghee, P., Malik, J.N., Pylypenko, S. et al. A review on direct methanol fuel cells–In the perspective of energy and sustainability. MRS Energy & Sustainability 2, 3 (2015). https://doi.org/10.1557/mre.2015.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2015.4

Keywords

Navigation