Skip to main content
Log in

Fusion materials modeling: Challenges and opportunities

  • High-Performance Computing for Materials Design to Advance Energy Science
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The plasma facing components, first wall, and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time-varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. Fortunately, recent innovations in computational modeling techniques, increasingly powerful high-performance and massively parallel computing platforms, and improved analytical experimental characterization tools provide the means to develop self-consistent, experimentally validated models of materials performance and degradation in the fusion energy environment. This article will describe the challenges associated with modeling the performance of plasma facing component and structural materials in a fusion materials environment, the opportunities to utilize high-performance computing, and two examples of recent progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. www.engineeringchallenges.org/cms/8996/9221.aspx

  2. J. Wesson, in Oxford Engineering Science Series 48, 2nd Edition (Clarendon Press , Oxford, 1997).

    Google Scholar 

  3. J. Roth, C. Garcia-Rosales, Nucl. Fusion 36, 1647 (1996).

    Article  CAS  Google Scholar 

  4. J. Roth, C. Garcia-Rosales, Nucl. Fusion 37, 897 (1997).

    Article  CAS  Google Scholar 

  5. E.E. Bloom, J. Nucl. Mater. 258263, 7 (1998).

    Article  Google Scholar 

  6. E.E. Bloom, N. Ghoniem, R. Jones, R. Kurtz, G.R. Odette, A. Rowecliffe, D. Smith, F.W. Wiffen, “Advanced Materials Program,” appendix D of the VLT roadmap ( 1999 ).

  7. http://vlt.ucsd.edu.

  8. S.J. Zinkle, N.M. Ghoneim, Fusion Eng. Des. 5152, 55 (2000).

    Article  Google Scholar 

  9. S.J. Zinkle, Phys. Plasmas 12, 058101 (2005).

    Article  CAS  Google Scholar 

  10. T. Muroga, M. Gasparotto, S.J. Zinkle, Fusion Eng. Des. 6162, 13 (2002).

    Article  Google Scholar 

  11. G.R. Odette, B.D. Wirth, D.J. Bacon, N.M. Ghoniem, MRS Bull. 26, 176 (2001).

    Article  CAS  Google Scholar 

  12. T. Yamashina, T. Hino, Appl. Surf. Sci. 48/49, 483 (1991).

    Article  Google Scholar 

  13. A. Horn, A. Schenk, J. Biener, B. Winter, C. Lutterloh, M. Wittmann, J. Kuppers, Chem. Phys. Lett. 231, 193 (1994).

    Article  CAS  Google Scholar 

  14. J. Kuppers, Surf. Sci. Rep. 22, 249 (1995).

    Article  Google Scholar 

  15. E. de Juan Pardo, M. Balden, B. Cieciwa, C. Garcia-Rosales, J. Roth, Phys. Scr. T. 111, 62 (2004).

    Article  Google Scholar 

  16. E. Salonen, K. Nordlund, J. Keinonen, C.H. Wu, Europhys. Lett. 52, 504 (2000).

    Article  CAS  Google Scholar 

  17. E. Salonen, K. Nordlund, J. Keinonen, C.H. Wu, Phys. Rev. B 63, 195415 (2001).

    Article  CAS  Google Scholar 

  18. A.V. Krasheninnikov, K. Nordlund, E. Salonen, J. Keinonen, C.H. Wu, Comput. Mater. Sci. 25, 427 (2002).

    Article  CAS  Google Scholar 

  19. J. Marian, L.A. Zepeda-Ruiz, N. Couto, E.M. Bringa, G.H. Gilmer, P.C. Stangeby, T.D. Rognlien, J. Appl. Phys. 101, 044506 (2007).

    Article  CAS  Google Scholar 

  20. P.S. Krstic, C.O. Reinhold, S. Stuart, Europhys. Lett. 77 (2007).

  21. P.N. Maya, U. von Toussaint, C. Hopf, New J. Phys. 10, 023002 (2008).

    Article  CAS  Google Scholar 

  22. D.A. Alman, D.N. Ruzic, J. Nucl. Mater. 313316, 182 (2003).

    Article  Google Scholar 

  23. E. Salonen, Phys. Scr. T. 111, 133 (2004).

    Article  Google Scholar 

  24. P.S. Krstic, C.O. Reinhold, S. Stuart, New J. Phys. 9, 209 (2007).

    Article  CAS  Google Scholar 

  25. K. Nordlund, E. Salonen, A.V. Krasheninnikov, J. Keinonen, Pure Appl.Chem. 78, 1203 (2006).

    Article  CAS  Google Scholar 

  26. P. Traskelin, N. Juslin, P. Erhart, K. Nordlund, Phys. Rev. B 75, 174113 (2007).

    Article  CAS  Google Scholar 

  27. R.E. Johnson, J. Schou, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 43, 403 (1993).

    Google Scholar 

  28. C. Bjorkas, K. Vörtler, K. Nordlund, D. Nishijima, R. Doerner, New J. Phys. 11, 123017 (2009).

    Article  CAS  Google Scholar 

  29. W. Jacob, Thin Solid Films 326, 1 (1998).

    Article  CAS  Google Scholar 

  30. T. Kurki-Suonio, V. Hynönen, T. Ahlgren, K. Nordlund, K. Sugiyama, R. Dux, Europhys. Lett. 78, 65002 (2007).

    Article  CAS  Google Scholar 

  31. R. Frauenfelder, J. Vac. Sci. Technol. 6, 388 (1969).

    Article  CAS  Google Scholar 

  32. T. Ahlgren, K. Heinola, E. Vainonen-Ahlgren, J. Likonen, J. Keinonen, Nucl. Instrum. Methods Phys. Res., Sect. B 249, 436 (2006).

    Article  CAS  Google Scholar 

  33. T. Yamamoto, G.R. Odette, P. Miao, D.T. Hoelzer, J. Bentley, N. Hashimoto, H. Tanigawa, R.J. Kurtz, J. Nucl. Mater. 367370, 399 (2007).

    Article  CAS  Google Scholar 

  34. H. Trinkaus, J. Nuclear Materials 118, 39 (1983).

    Article  CAS  Google Scholar 

  35. H. Ullmaier, Nuclear Fusion 24 1039 (1984).

    Article  CAS  Google Scholar 

  36. D. Xu, B.D. Wirth, J. Nucl. Mater. 403, 184 (2010).

    Article  CAS  Google Scholar 

  37. C.C. Fu, F. Willaime, Phys. Rev. B 72, 064117 (2005).

    Article  CAS  Google Scholar 

  38. T. Seletskaia, Y.N. Osetsky, R.E. Stoller, G.M. Stocks, J. Nucl. Mater. 351, 109 (2006).

    Article  CAS  Google Scholar 

  39. K. Morishita, R. Sugano, B.D. Wirth, T.D. de la Rubia, Nucl. Instrum. Methods Phys. Res., Sect. B 202, 76 (2003).

    Article  CAS  Google Scholar 

  40. C.J. Ortiz, M.J. Caturla, C.C. Fu, F. Willaime, Phys. Rev. B 75, 100102 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Wirth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, B.D., Nordlund, K., Whyte, D.G. et al. Fusion materials modeling: Challenges and opportunities. MRS Bulletin 36, 216–222 (2011). https://doi.org/10.1557/mrs.2011.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.37

Navigation