Skip to main content
Log in

The contribution of cell-cell signaling and motility to bacterial biofilm formation

  • All Together Now: Integrating Biofilm Research Across Disciplines
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically, we describe quorum sensing and surface motility exhibited by the bacterium Pseudomonas aeruginosa, a ubiquitous environmental organism that acts as an opportunistic human pathogen in immunocompromised individuals. P. aeruginosa uses acyl-homoserine lactone signals during quorum sensing to synchronize gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P. aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G.G. Geesey, R. Mutch, J.W. Costerton, R.B. Green, Limn. Ocean. 23, 6 (1978).

    Google Scholar 

  2. S. Molin, T. Tolker-Nielsen, Curr. Opin. Biotechnol. 14, 3 (2003).

    Google Scholar 

  3. F. Emtiazi, T. Schwartz, S.M. Marten, P. Krolla-Sidenstein, U. Obst, Water Res. 38, 5 (2004).

    Google Scholar 

  4. C.K. Stover, X.Q. Pham, A.L. Erwin, S.D. Mizoguchi, P. Warrener, M.J. Hickey, F.S. Brinkman, W.O. Hufnagle, D.J. Kowalik, M. Lagrou, R.L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L.L. Brody, S.N. Coulter, K.R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G.K. Wong, Z. Wu, I.T. Paulsen, J. Reizer, M.H. Saier, R.E. Hancock, S. Lory, M.V. Olson, Nature 406, 6799 (2000).

    Google Scholar 

  5. J.B. Lyczak, C.L. Cannon, G.B. Pier, Microbes Infect. 2, 9 (2000).

    Google Scholar 

  6. E. Banin, M.L. Vasil, E.P. Greenberg, Proc. Natl. Acad. Sci. U.S.A. 102, 31 (2005).

    Google Scholar 

  7. C. Fuqua, M.R. Parsek, E.P. Greenberg, Annu. Rev. Genet. 35 (2001).

  8. C. Fuqua, E.P. Greenberg, Nat. Rev. Mol. Cell Biol. 3, 9 (2002).

    Google Scholar 

  9. M.B. Miller, B.L. Bassler, Annu. Rev. Microbiol. 55 (2001).

  10. M.E. Taga, B.L. Bassler, Proc. Natl. Acad. Sci. U.S.A. 100 (2003).

  11. C. Fuqua, E.P. Greenberg, Curr. Opin. Microbiol. 1, 2 (1998).

    Google Scholar 

  12. N.A. Whitehead, A.M.L. Barnard, H. Slater, N.J.L. Simpson, G.P.C. Salmond, FEMS Microbiol. Rev. 25, 4 (2001).

    Google Scholar 

  13. T.R. de Kievit, Y. Kakai, J.K. Register, E.C. Pesci, B.H. Iglewski, FEMS Microbiol. Lett. 212, 1 (2002).

    Google Scholar 

  14. M. Whiteley, K.M. Lee, E.P. Greenberg, Proc. Natl. Acad. Sci. U.S.A. 96, 24 (1999).

    Google Scholar 

  15. V.E. Wagner, D. Bushnell, L. Passador, A.I. Brooks, B.H. Iglewski, J. Bacteriol. 185, 7 (2003).

    Google Scholar 

  16. C. Arevalo-Ferro, M. Hentzer, G. Reil, A. Gorg, S. Kjelleberg, M. Givskov, K. Riedel, L. Eberl, Environ. Microbiol. 5, 12 (2003).

    Google Scholar 

  17. M. Schuster, C.P. Lostroh, T. Ogi, E.P. Greenberg, J. Bacteriol. 185, 7 (2003).

    Google Scholar 

  18. S. McGrath, D.S. Wade, E.C. Pesci, FEMS Microbiol. Lett. 230, 1 (2004).

    Google Scholar 

  19. T. Bjarnsholt, P.O. Jensen, M.J. Fiandaca, J. Pedersen, C.R. Hansen, C.B. Andersen, T. Pressler, M. Givskov, N. Hoiby, Pediatr. Pulmonol. 44, 6 (2009).

    Google Scholar 

  20. K. Kirketerp-Moller, P.O. Jensen, M. Fazli, K.G. Madsen, J. Pedersen, C. Moser, T. Tolker-Nielsen, N. Hoiby, M. Givskov, T. Bjarnsholt, J. Clin. Microbiol. 46, 8 (2008).

    Google Scholar 

  21. D.G. Davies, M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costerton, E.P. Greenberg, Science 280, 5361 (1998).

    Google Scholar 

  22. A. Heydorn, B. Ersboll, J. Kato, M. Hentzer, M.R. Parsek, T. Tolker-Nielsen, M. Givskov, S. Molin, Appl. Environ. Microbiol. 68, 4 (2002).

    Google Scholar 

  23. T.R. de Kievit, R. Gillis, S. Marx, C. Brown, B.H. Iglewski, Appl. Environ. Microbiol. 67, 4 (2001).

    Google Scholar 

  24. M.J. Kirisits, J.J. Margolis, B.L. Purevdorj-Gage, B. Vaughan, D.L. Chopp, P. Stoodley, M.R. Parsek, J. Bacteriol. 189, 22 (2007).

    Google Scholar 

  25. B. Purevdorj, J.W. Costerton, P. Stoodley, Appl. Environ. Microbiol. 68, 9 (2002).

    Google Scholar 

  26. P. Stoodley, A. Jacobsen, B.C. Dunsmore, B. Purevdorj, S. Wilson, H.M. Lappin-Scott, J.W. Costerton, Water Sci. Technol. 43, 6 (2001).

    Google Scholar 

  27. J. Folsom, L. Richards, B. Pitts, F. Roe, G. Ehrlich, A. Parker, A. Mazurie, P. Stewart, BMC Microbiol. 10, 1 (2010).

    Google Scholar 

  28. M. Whiteley, M.G. Bangera, R.E. Bumgarner, M.R. Parsek, G.M. Teitzel, S. Lory, E.P. Greenberg, Nature 413, 6858 (2001).

    Google Scholar 

  29. J.D. Shrout, D.L. Chopp, C.L. Just, M. Hentzer, M. Givskov, M.R. Parsek, Mol. Microbiol. 62, 5 (2006).

    Google Scholar 

  30. N. Bollinger, D.J. Hasset, B.H. Iglewski, J.W. Costerton, T.R. McDermott, J. Bacteriol. 183, 6 (2001).

    Google Scholar 

  31. M.E. Davey, N.C. Caiazza, G.A. O’Toole, J. Bacteriol. 185, 3 (2003).

    Google Scholar 

  32. S.J. Pamp, T. Tolker-Nielsen, J. Bacteriol. 189, 6 (2007).

    Google Scholar 

  33. M. Alhede, T. Bjarnsholt, P.O. Jensen, R.K. Phipps, C. Moser, L. Christophersen, L.D. Christensen, M. van Gennip, M. Parsek, N. Hoiby, T.B. Rasmussen, M. Givskov, Microbiology 155, Pt 11 (2009).

  34. P.O. Jensen, T. Bjarnsholt, R. Phipps, T.B. Rasmussen, H. Calum, L. Christoffersen, C. Moser, P. Williams, T. Pressler, M. Givskov, N. Hoiby, Microbiology 153, Pt 5 (2007).

  35. K. Winzer, C. Falconer, N.C. Garber, S.P. Diggle, M. Camara, P. Williams, J. Bacteriol. 182, 22 (2000).

    Google Scholar 

  36. E. Banin, M.L. Vasil, E.P. Greenberg, Proc. Natl. Acad. Sci. U.S.A. 102, 31 (2005).

    Google Scholar 

  37. J.S. Mattick, Annu. Rev. Microbiol. 56, 1 (2002).

    Google Scholar 

  38. T.S. Murray, B.I. Kazmierczak, J. Bacteriol. 190, 8 (2008).

    Google Scholar 

  39. N.C. Caiazza, R.M. Shanks, G.A. O’Toole, J. Bacteriol. 187, 21 (2005).

    Google Scholar 

  40. E. Déziel, F. Lépine, S. Milot, R. Villemur, Microbiology 149, 8 (2003).

    Google Scholar 

  41. T. Köhler, L.K. Curty, F. Barja, C. van Delden, J.C. Pechére, J. Bacteriol. 182, 21 (2000).

    Google Scholar 

  42. U.A. Ochsner, A. Fiechter, J. Reiser, Journal of Biological Chemistry 269, 31 (1994).

    Google Scholar 

  43. J. Overhage, S. Lewenza, A.K. Marr, R.E. Hancock, J. Bacteriol. 189, 5 (2007).

    Google Scholar 

  44. P. Nadal Jimenez, G. Koch, E. Papaioannou, M. Wahjudi, J. Krzeslak, T. Coenye, R.H. Cool, W.J. Quax, Microbiology 156, Pt 1 (2010).

  45. A.T.Y. Yeung, E.C.W. Torfs, F. Jamshidi, M. Bains, I. Wiegand, R.E.W. Hancock, J. Overhage, J. Bacteriol. 191 (18), 5592 (2009).

    Google Scholar 

  46. R. Glick, C. Gilmour, J. Tremblay, S. Satanower, O. Avidan, E. Deziel, E.P. Greenberg, K. Poole, E. Banin, J. Bacteriol. 12 (192), 2973 (2010).

    Google Scholar 

  47. K.B. Barken, S.J. Pamp, L. Yang, M. Gjermansen, J.J. Bertrand, M. Klausen, M. Givskov, C.B. Whitchurch, J.N. Engel, T. Tolker-Nielsen, Environ. Microbiol. 10, 9 (2008).

    Google Scholar 

  48. M. Klausen, A. Aaes-Jørgensen, S. Mølin, T. Tolker-Nielsen, Mol. Microbiol. 50, 1 (2003).

    Google Scholar 

  49. A.T. Nielsen, T. Tolker-Nielsen, K.B. Barken, S. Molin, Environ. Microbiol. 2, 1 (2000).

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by MCB0822405 (NSF) and R01 A1077628 (NIH) to M.R.P. Joshua Shrout is supported by the Indiana Clinical and Translational Science Institute (NIH # UL1RR025761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Shrout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrout, J.D., Tolker-Nielsen, T., Givskov, M. et al. The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bulletin 36, 367–373 (2011). https://doi.org/10.1557/mrs.2011.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.67

Navigation