Skip to main content
Log in

Pure colors from core–shell quantum dots

  • Quantum dot light-emitting devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Emissive saturated colors are key components of new generations of lighting and display technologies. Quantum dots have evolved in the past two decades to fulfill many of the requirements of color purity, stability, and efficiency that are critical to transitioning these materials from the laboratory into these markets. A fundamental feature of quantum dots is the tunability of their emission color through precise control of their size and composition, giving access to UV, visible, and near-infrared wavelengths. Continuing improvements in engineering core–shell quantum dot structures, where a 1–10 nm binary, ternary, or alloyed semiconductor core particle is surrounded by a shell composed of one or more semiconductors of a wider bandgap, have resulted in materials with fluorescence quantum yields that approach unity, narrow symmetric spectral line shapes, and remarkable stabilities. In this article, we review progress in the development of highly luminescent core–shell quantum dots of different semiconductor families in view of their integration in light-emitting applications. CdSe-based quantum dots already fulfill many of the requirements of lighting and display applications in terms of fluorescence quantum yield, color purity, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A.I. Ekimov, A.A. Onushchenko, JETP Lett. 34, 345 (1981).

    Google Scholar 

  2. Al. L. Efros, A.L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  3. L.E. Brus, J. Chem. Phys. 79, 5566 (1983).

    Google Scholar 

  4. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Google Scholar 

  5. P. Reiss, M. Protière, L. Li, Small 5, 154 (2009).

    Google Scholar 

  6. O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H. Han, D. Fukumura, R.K. Jain, M.G. Bawendi, Nat. Mater. 12, 445 (2013).

    Google Scholar 

  7. C. Philippot, P. Reiss, in Synthesis of Inorganic Nanocrystals for Biological Fluorescence Imaging, J.M. de la Fuente, V. Grazu, Eds. (Elsevier, Amsterdam, The Netherlands, 2012), pp. 81–114.

    Google Scholar 

  8. S. Kumar, T. Nann, Small 2, 316 (2006).

    Google Scholar 

  9. P.D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 35, 1195 (2006).

    Google Scholar 

  10. Z.A. Peng, X. Peng, J. Am. Chem. Soc. 123, 183 (2001).

    Google Scholar 

  11. L. Qu, Z.A. Peng, X. Peng, Nano Lett. 1, 333 (2001).

    Google Scholar 

  12. C. Yang, D.D. Awschalom, G.D. Stucky, Chem. Mater. 13, 594 (2001).

    Google Scholar 

  13. W. Yu, X. Peng, Angew. Chem. Int. Ed. 41, 2368 (2002).

    Google Scholar 

  14. J.H. Yu, J. Joo, H.M. Park, S.I. Baik, Y.W. Kim, S.C. Kim, T. Hyeon, J. Am. Chem. Soc. 127, 5662 (2005).

    Google Scholar 

  15. M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. B 102, 3655 (1998).

    Google Scholar 

  16. R. Xie, X. Zhong, T. Basché, Adv. Mater. 17, 2741 (2005).

    Google Scholar 

  17. A.R. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, L.E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).

    Google Scholar 

  18. M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).

    Google Scholar 

  19. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Google Scholar 

  20. X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).

    Google Scholar 

  21. J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, J. Am. Chem. Soc. 125, 12567 (2003).

    Google Scholar 

  22. D.V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, H. Weller, Nano Lett. 3, 1677 (2003).

    Google Scholar 

  23. D.V. Talapin, J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, A.P. Alivisatos, Nano Lett. 7, 2951 (2007).

    Google Scholar 

  24. L. Carbone, C. Nobile, M.D. Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, L. Manna, Nano Lett. 7, 2942 (2007).

    Google Scholar 

  25. J.S. Steckel, P.T. Snee, S.A. Coe-Sullivan, J.P. Zimmer, J.E. Halpert, P.O. Anikeeva, L. Kim, V. Bulovic, M.G. Bawendi, Angew. Chem. Int. Ed. 45, 5796 (2006).

    Google Scholar 

  26. M. Protière, P. Reiss, Small 3, 399 (2007).

    Google Scholar 

  27. S. Jun, E. Jang, Angew. Chem. Int. Ed. 52, 679 (2013).

    Google Scholar 

  28. J.S. Steckel, J.P. Zimmer, S. Coe-Sullivan, N.E. Stott, V. Bulovic, M.G. Bawendi, Angew. Chem. Int. Ed. 43, 2154 (2004).

    Google Scholar 

  29. M. Protière, P. Reiss, Nanoscale Res. Lett. 1, 62 (2006).

    Google Scholar 

  30. H.S. Chen, B. Lo, J.Y. Hwang, G.Y. Chang, C.M. Chen, S.J. Tasi, S.J. Wang, J. Phys. Chem. B 108, 17119 (2004).

    Google Scholar 

  31. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. 12, 1102 (2000).

    Google Scholar 

  32. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulovic, Nano Lett. 9, 2532 (2009).

    Google Scholar 

  33. M. Nirmal, B.O. Dabbous, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris, L.E. Brus, Nature 383, 802 (1996).

    Google Scholar 

  34. I. Chung, M.G. Bawendi, Phys. Rev. B 70, 165304 (2004).

    Google Scholar 

  35. P. Frantsuzov, M. Kuno, B. Janko, R.A. Marcus, Nat. Phys. 4, 519 (2008).

    Google Scholar 

  36. S. Hohng, T. Ha, J. Am. Chem. Soc. 126, 1324 (2004).

    Google Scholar 

  37. N.I. Hammer, K.T. Early, K. Sill, M.Y. Odoi, T. Emrick, M.D. Barnes, J. Phys. Chem. B 110, 14167 (2006).

    Google Scholar 

  38. V. Fomenko, D.J. Nesbitt, Nano Lett. 8, 287 (2008).

    Google Scholar 

  39. Y.F. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, J.A. Hollingsworth. J. Am. Chem. Soc. 130, 5026 (2008).

    Google Scholar 

  40. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.P. Hermier, B. Dubertret, Nat. Mater. 7, 659 (2008).

    Google Scholar 

  41. M.A. Hines, G.D. Scholes, Adv. Mater. 15, 1844 (2003).

    Google Scholar 

  42. I. Moreels, Y. Justo, B.D. Geyter, K. Haustraete, J.C. Martins, Z. Hens, ACS Nano 5, 2004 (2011).

    Google Scholar 

  43. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Nature 442, 180 (2006).

    Google Scholar 

  44. J.S. Steckel, S. Coe-Sullivan, V. Bulovic, M.G. Bawendi, Adv. Mater. 15, 1862 (2003).

    Google Scholar 

  45. J. Tang, E.H. Sargent. Adv. Mater. 23, 12 (2011).

    Google Scholar 

  46. F. Chen, K.L. Stokes, W. Zhou, J. Fang, C.B. Murray, Mater. Res. Soc. Proc. G10.2, 691 (2001).

    Google Scholar 

  47. J.M. Pietryga, D.J. Werder, D.J. Williams, J.L. Casson, R.D. Schaller, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 130, 4879 (2008).

    Google Scholar 

  48. S.M.Geyer, J.M. Scherer, N. Moloto, F.B. Jaworski, M.G. Bawendi, ACS Nano 5, 5566 (2011).

    Google Scholar 

  49. S.D. Miao, S.G. Hickey, B. Rellinghaus, C. Waurisch, A. Eychmuller, J. Am. Chem. Soc. 132, 5613 (2010).

    Google Scholar 

  50. R. Xie, J. Zhang, F. Zhao, W. Yang, X. Peng, Chem. Mater. 22, 3820 (2010)

    Google Scholar 

  51. D.K. Harris, P.M. Allen, H.S. Han, B.J. Walker, J.M. Lee, M.G. Bawendi, J. Am. Chem. Soc. 133, 4676 (2011).

    Google Scholar 

  52. O.I. Micic, C.J. Curtis, K.M. Jones, J.R. Sprague, A.J. Nozik, J. Phys. Chem. 98, 4966 (1994).

    Google Scholar 

  53. A.A. Guzelian, J.E.B. Katari, A.V. Kadavanich, U. Banin, K. Hamad, E. Juban A.P. Alivisatos, R.H. Wolters, C.C. Arnold, J.R. Heath, J. Phys. Chem. 100, 7212 (1996).

    Google Scholar 

  54. A.A. Guzelian, U. Banin, A.V. Kadavanich, X. Peng, A.P. Alivisatos, Appl. Phys. Lett. 69, 1432 (1996).

    Google Scholar 

  55. D. Battaglia, X.G. Peng, Nano Lett. 2, 1027 (2002).

    Google Scholar 

  56. S. Xu, S. Kumar, T. Nann, J. Am. Chem. Soc. 128, 1054 (2006).

    Google Scholar 

  57. R. Xie, D. Battaglia, X. Peng, J. Am. Chem. Soc. 129, 15432 (2007).

    Google Scholar 

  58. S. Xu, J. Ziegler, T. Nann, J. Mater. Chem. 18, 2653 (2008).

    Google Scholar 

  59. K. Huang, R. Demadrille, M.G. Silly, F. Sirotti, P. Reiss, O. Renault, ACS Nano 4, 4799 (2010).

    Google Scholar 

  60. L. Li, P. Reiss, J. Am. Chem. Soc. 130, 11588 (2008).

    Google Scholar 

  61. J. Lim, W.K. Bae, D. Lee, M.K. Nam, J. Jung, C. Lee, K. Char, S. Lee, Chem. Mater.23, 4459 (2011).

    Google Scholar 

  62. K. Kim, H. Lee, J. Ahn, S. Jeong, Appl. Phys. Lett. 101, 073107 (2012).

    Google Scholar 

  63. Y.W. Cao, U. Banin, J. Am. Chem. Soc. 122, 9692 (2000).

    Google Scholar 

  64. A. Aharoni, T. Mokari, I. Popov, U. Banin, J. Am. Chem. Soc. 128, 257 (2006).

    Google Scholar 

  65. R.G. Xie, X.G. Peng, Angew. Chem. Int. Ed. 47, 7677 (2008).

    Google Scholar 

  66. P.M. Allen, W. Liu, V.P. Chauhan, J. Lee, A.Y. Ting, D. Fukumura, R.K. Jain M.G. Bawendi, J. Am. Chem. Soc. 132, 470 (2009).

    Google Scholar 

  67. D. Aldakov, A. Lefrancois, P. Reiss, J. Mater. Chem. C 1, 3756 (2013).

    Google Scholar 

  68. J.J. Nairn, P.J. Shapiro, B. Twamley, T. Pounds, R. von Wandruszka, T.R. Fletcher M. Williams, C.M. Wang, M.G. Norton, Nano Lett. 6, 1218 (2006).

    Google Scholar 

  69. C. Czekelius, M. Hilgendorff, L. Spanhel, I. Bedja, M. Lerch, G. Muller, U. Bloeck, D.S. Su, M. Giersig, Adv. Mater. 11, 643 (1999).

    Google Scholar 

  70. S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, A.F. Hepp, Chem. Mater. 15, 3142 (2003).

    Google Scholar 

  71. S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, A.F. Hepp, J. Phys. Chem. B 108, 12429 (2004).

    Google Scholar 

  72. H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, Chem. Mater. 18, 3330 (2006).

    Google Scholar 

  73. T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani A. Kudo, S. Kuwabata, J. Am. Chem. Soc. 129, 12388 (2007).

    Google Scholar 

  74. L. Li, T. Daou, I. Texier, T. Tran, N. Liem, P. Reiss, Chem. Mater 21, 2422 (2009).

    Google Scholar 

  75. L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga, V.I. Klimov, J. Am. Chem. Soc. 133, 1176 (2011).

    Google Scholar 

  76. E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, B. Dubertret, Chem. Mater. 22, 6117 (2010).

    Google Scholar 

Download references

Acknowledgments

P.R. thanks the French National Research Agency (NANOFRET, grant number ANR-12-NANO-0007) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ou Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, O., Wei, H., Maurice, A. et al. Pure colors from core–shell quantum dots. MRS Bulletin 38, 696–702 (2013). https://doi.org/10.1557/mrs.2013.179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.179

Navigation