Skip to main content

Advertisement

Log in

III–V compound semiconductor transistors—from planar to nanowire structures

  • New Materials for Post-Si Computing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Conventional silicon transistor scaling is fast approaching its limits. An extension of the logic device roadmap to further improve future performance increases of integrated circuits is required to propel the electronics industry. Attention is turning to III–V compound semiconductors that are well positioned to replace silicon as the base material in logic switching devices. Their outstanding electron transport properties and the possibility to tune heterostructures provide tremendous opportunities to engineer novel nanometer-scale logic transistors. The scaling constraints require an evolution from planar III–V metal oxide semiconductor field-effect transistors (MOSFETs) toward transistor channels with a three-dimensional structure, such as nanowire FETs, to achieve future performance needs for complementary metal oxide semiconductor (CMOS) nodes beyond 10 nm. Further device innovations are required to increase energy efficiency. This could be addressed by tunnel FETs (TFETs), which rely on interband tunneling and thus require advanced III–V heterostructures for optimized performance. This article describes the challenges and recent progress toward the development of III–V MOSFETs and heterostructure TFETs—from planar to nanowire devices—integrated on a silicon platform to make these technologies suitable for future CMOS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. W. Haensch, E.J. Nowak, R.H. Dennard, P.M. Solomon, A. Bryant, O.H. Dokumaci, A. Kumar, X. Wang, J.B. Johnson, IBM J. Res. Dev. 50 (4/5), 339 (2006).

    Google Scholar 

  2. T. Sakurai, VLSI IEICE Trans. Electron. E87-C, 429 (2004).

    Google Scholar 

  3. H. Iwai, Microelectron. Eng. 86, 1520 (2009).

    Google Scholar 

  4. D.J. Frank, IBM J. Res. Dev. 46, 235 (2002).

    Google Scholar 

  5. T.N. Theis, P.M. Solomon, Proc. IEEE 98, 2005 (2010).

    Google Scholar 

  6. K.J. Kuhn, IEEE Trans. Electron Devices 59 (7), 1813 (2012).

    Google Scholar 

  7. J.P. Colinge, H.H. Gao, A. Romano-Rodriguez, H. Maes, C. Claeys, Tech. Dig. Int. Electron Devices Mtg. 595 (1990).

    Google Scholar 

  8. I. Ferain, C.A. Colinge, J.-P. Colinge, Nature 479, 310 (2011).

    Google Scholar 

  9. J.A. del Alamo, Nature 479, 317 (2011).

    Google Scholar 

  10. H. Shang, M.M. Frank, E.P. Gusev, J.O. Chu, S.W. Bedell, K.W. Guarini, M. Ieong, IBM J. Res. Dev. 50 (4/5), 377 (2006).

    Google Scholar 

  11. C. Jeong, D.A. Antoniadis, M.S. Lundstrom, IEEE Trans. Electron Devices 56, 2762 (2009).

    Google Scholar 

  12. D.A. Antoniadis, I. Aberg, C. Ni Chleirigh, O.M. Nayfeh, A. Khakifi rooz, J.L. Hoyt, IBM J. Res. Dev. 50 (4/5), 363 (2006).

    Google Scholar 

  13. D.-H. Kim, J.A. del Alamo, D.A. Antoniadis, B. Brar, IEEE Int. Electron. Devices Mtg. 861 (2009).

    Google Scholar 

  14. G. Hock, T. Hackbarth, U. Erben, E. Kohn, U. Konig, Electron. Lett. 34, 1888 (1998).

    Google Scholar 

  15. B. Bennett, M. Ancona, J. Boos, C. Canedy, S. Khan, J. Cryst. Growth 311, 47 (2008).

    Google Scholar 

  16. M. Radosavljevic, T. Ashley, A. Andreev, S.D. Coomber, G. Dewey, M.T. Emeny, M. Fearn, D.G. Hayes, K.P. Hilton, M.K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S.J. Smith, M.J. Uren, D.J. Wallis, P.J. Wilding, R. Chau, IEEE Int. Electron Devices Mtg. 1 (2008).

    Google Scholar 

  17. B.R. Bennett, M.G. Ancona, J.B. Boos, B.V. Shanabrook, Appl. Phys. Lett. 91, 042104 (2007).

    Google Scholar 

  18. K. Bernstein, R.K. Cavin, W. Porod, A. Seabaugh, J. Welser, Proc. IEEE 98 (12), 2169 (2010).

    Google Scholar 

  19. A.M. Ionescu, H. Riel, Nature 479, 329 (2011).

    Google Scholar 

  20. A.C. Seabaugh, Q. Zhang, Proc. IEEE 98, 2095 (2010).

    Google Scholar 

  21. D.H. Kim, J.A. del Alamo, IEEE Electron Devices Lett. 31, 806 (2010).

    Google Scholar 

  22. J.A. del Alamo, Proc. ESSDERC-ESSCIRC 16–21 (2013).

    Google Scholar 

  23. J.A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, J. Lin, W. Lu, A. Vardi, X. Zhao, IEEE Int. Electron Devices Mtg. 24 (2013).

    Google Scholar 

  24. S.W. Chang, X. Li, R. Oxland, S.W. Wang, C.H. Wang, R. Contreras-Guerrero, K.K. Bhuwalka, G. Doornbos, T. Vasen, M.C. Holland, G. Vellianitis, M.J.H. van Dal, B. Duriez, M. Edirisooriya, J.S. Rojas-Ramirez, P. Ramvall, S. Thoms, U. Peralagu, C.H. Hsieh, Y.S. Chang, K.M. Yin, E. Lind, L.-E. Wernersson, R. Droopad, I. Thayne, M. Passlack, C.H. Diaz, IEEE Int. Electron Devices Mtg. 417 (2013).

    Google Scholar 

  25. J. Lin. X. Zhao, T. Yu, D.A. Antoniadis, J.A. del Alamo, IEEE Int. Electron Devices Mtg. 421 (2013).

    Google Scholar 

  26. D.-H. Kim, B. Brar, J.A. del Alamo, IEEE Int. Electron Devices Mtg. 319 (2011).

    Google Scholar 

  27. Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, New York, 1998).

    Google Scholar 

  28. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 2003).

    Google Scholar 

  29. M. Hong, J. Kwo, T.D. Lin, M.L. Huang, MRS Bull. 34, 514 (2009).

    Google Scholar 

  30. M. Hong, M. Passlack, J.P. Mannaerts, J. Kwo, S.N.G. Chu, N. Moriya, S.Y. Hou, V.J. Fratello, J. Vac. Sci. Technol. B 14, 2297 (1996).

    Google Scholar 

  31. M. Hong, Z.H. Lu, J. Kwo, A.R. Kortan, J.P. Mannaerts, J.J. Krajewski, K.C. Hsieh, L.J. Chou, K.Y. Cheng, Appl. Phys. Lett. 76, 312 (2000).

    Google Scholar 

  32. M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, A.M. Sergent, Science 283, 1897 (1999).

    Google Scholar 

  33. T.W. Pi, H.Y. Lin, T.H. Chiang, Y.T. Liu, Y.C. Chang, T.D. Lin, G.K. Wertheim, J. Kwo, M. Hong, Appl. Surf. Sci. 284, 601 (2013).

    Google Scholar 

  34. C.A. Lin, H.C. Chiu, T.H. Chiang, T.D. Lin, Y.H. Chang, W.H. Chang, Y.C. Chang, W.E. Wang, J. Dekoster, T.Y. Hoffmann, M. Hong, J. Kwo, Appl. Phys. Lett. 98, 109901 (2011).

    Google Scholar 

  35. G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, M. Heyns, Appl. Phys. Lett. 91, 133510 (2007).

    Google Scholar 

  36. F. Ren, M. Hong, W.S. Hobson, J.M. Kuo, J.R. Lothian, J.P. Mannaerts, J. Kwo, Y.K. Chen, A.Y. Cho, Tech. Dig. Int. Electron Devices Mtg. 943 (1996).

    Google Scholar 

  37. F. Ren, J.M. Kuo, M. Hong, W.S. Hobson, J.R. Lothian, J. Lin, H.S. Tsai, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, A.Y. Cho, IEEE Electron Devices Lett. 19, 309 (1998).

    Google Scholar 

  38. Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, J. Kwo, H.S. Tsai, J.J. Krajewski, J.S. Weiner, Y.K. Chen, A.Y. Cho, Mater. Res. Soc. Symp. Proc. 573, H. Hasegawa, M. Hong, Z.H. Lu, S.J. Pearton, Eds. (Materials Research Society, Warrendale, PA, 1999), p. 219.

    Google Scholar 

  39. T.D. Lin, W.H. Chang, R.L. Chu, Y.C. Chang, Y.H. Chang, M.Y. Lee, P.F. Hong, M.-C. Chen, J. Kwo, M. Hong, Appl. Phys. Lett. 103, 253509 (2013).

    Google Scholar 

  40. P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, S.N.G. Chu, S. Nakahara, H.-J.L. Gossmann, J.P. Mannaerts, M. Hong, K.K. Ng, J. Bude, Appl. Phys. Lett. 83, 180 (2003).

    Google Scholar 

  41. P.D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.J.L. Gossmann, M. Frei, S.N.G. Chu, J.P. Mannaerts, M. Sergent, M. Hong, K.K. Ng, J. Bude, IEEE Electron Devices Lett. 24, 209 (2003).

    Google Scholar 

  42. M.M. Frank, G.D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y.J. Chabal, J. Grazul, D.A. Muller, Appl. Phys. Lett. 86, 152904 (2005).

    Google Scholar 

  43. M.L. Huang, Y.C. Chang, C.H. Chang, Y.J. Lee, P. Chang, J. Kwo, T.B. Wu, M. Hong, Appl. Phys. Lett. 87, 252104 (2005).

    Google Scholar 

  44. M. Milojevic, C.L. Hinkle, F.S. Aguirre-Tostado, H.C. Kim, E.M. Vogel, J. Kim, R.M. Wallace, Appl. Phys. Lett. 93, 252905 (2008).

    Google Scholar 

  45. C.L. Hinkle, A.M. Sonnet, E.M. Vogel, S. McDonnell, G.J. Hughes, M. Milojevic, B. Lee, F.S. Aguirre-Tostado, K.J. Choi, H.C. Kim, J. Kim, R.M. Wallace, Appl. Phys. Lett. 92, 071901 (2008).

    Google Scholar 

  46. Y. Xuan, Y.Q. Wu, H.C. Lin, T. Shen, P.D. Ye, IEEE Electron Devices Lett. 28, 935 (2007).

    Google Scholar 

  47. Y. Xuan, H.C. Lin, P.D. Ye, G.D. Wilk, Appl. Phys. Lett. 88 (26), 263518 (2006).

    Google Scholar 

  48. N. Li, E.S. Harmon, J. Hyland, D.B. Salzman, T.P. Ma, Y. Xuan, P.D. Ye, Appl. Phys. Lett. 92 (14), 143507 (2008).

    Google Scholar 

  49. Y. Wu, Y. Xuan, P.D. Ye, IEEE Proc. Dev. Res. Conf. 117–118 (2007).

    Google Scholar 

  50. J. Robertson, B. Falabretti, J. Appl. Phys. 100, 014111 (2006).

    Google Scholar 

  51. H.D. Trinh, E.Y. Chang, P.W. Wu, Y.Y. Wong, C.T. Chang, Y.F. Hsieh, C.C. Yu, H.Q. Nguyen, Y.C. Lin, K.L. Lin, M.K. Hudait, Appl. Phys. Lett. 97, 042903 (2010).

    Google Scholar 

  52. E. O’Connor, B. Brennan, V. Djara, K. Cherkaoui, S. Monaghan, S.B. Newcomb, R. Contreras, M. Milojevic, G. Hughes, M.E. Pemble, R.M. Wallace, P.K. Hurley, J. Appl. Phys. 109, 024101 (2011).

    Google Scholar 

  53. I. Ok, J.C. Lee, in Fundamentals of III-V Semiconductor MOSFETs, S. Oktyabrsky, P.D. Ye, Eds. (Springer Verlag, New York, 2010), p. 307.

    Google Scholar 

  54. Y.D. Wu, T.D. Lin, T.H. Chiang, Y.C. Chang, H.C. Chiu, Y.J. Lee, M. Hong, C.A. Lin, J. Kwo, J. Vac. Sci. Technol. B 28, C3H10 (2010).

    Google Scholar 

  55. C.-W. Cheng, G. Apostolopoulos, E.A. Fitzgerald, J. Appl. Phys. 109, 023714 (2011).

    Google Scholar 

  56. Y.-T. Chen, H. Zhao, Y. Wang, F. Xue, F. Zhou, J.C. Lee, Appl. Phys. Lett. 96, 103506 (2010).

    Google Scholar 

  57. M. El Kazzi, L. Czornomaz, C. Rossel, C. Gerl, D. Caimi, H. Siegwart, J. Fompeyrine, C. Marchiori, Appl. Phys. Lett. 100 (6), 063505 (2012).

    Google Scholar 

  58. T.D. Lin, Y.H. Chang, C.A. Lin, M.L. Huang, W.C. Lee, J. Kwo, M. Hong, Appl. Phys. Lett. 100, 172110 (2012).

    Google Scholar 

  59. M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M.K. Hudait, J.M. Fastenau, J. Kavalieros, W.K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah, R. Chau, Tech. Dig. Int. Electron Devices Mtg. 319 (2009).

    Google Scholar 

  60. A.M. Sonnet, R.V. Galatage, P.K. Hurley, E. Pelucchi, K.K. Thomas, A. Gocalinska, J. Huang, N. Goel, G. Bersuker, W.P. Kirk, C.L. Hinkle, R.M. Wallace, E.M. Vogel, Appl. Phys. Lett. 98, 193501 (2011).

    Google Scholar 

  61. A.M. Sonnet, R.V. Galatage, P.K. Hurley, E. Pelucchi, K. Thomas, A. Gocalinska, J. Huang, N. Goel, G. Bersuker, W.P. Kirk, C.L. Hinkle, E.M. Vogel, Microelectron. Eng. 88, 1083 (2011).

    Google Scholar 

  62. W. Lu, A. Guo, A. Vardi, J.A. del Alamo, IEEE Electron. Devices Lett. 35, 178 (2014).

    Google Scholar 

  63. R. Dormaier, S.E. Mohney, J. Vac. Sci. Technol. B 30, 031209 (2012).

    Google Scholar 

  64. A. Baraskar, A.C. Gossard, M.J.W. Rodwell, J. Appl. Phys. 114, 154516 (2013).

    Google Scholar 

  65. U. Singisetti, M.A. Wistey, J.D. Zimmerman, B.J. Thibeault, M.J.W. Rodwell, A.C. Gossard, S.R. Bank, Appl. Phys. Lett. 93, 183502 (2008).

    Google Scholar 

  66. U. Singisetti, A.M. Crook, E. Lind, J.D. Zimmerman, M.A. Wistey, A.C. Gossard, M.J.W. Rodwell, IEEE Dev. Res. Conf. 149 (2007).

    Google Scholar 

  67. A.M. Crook, E. Lind, Z. Griffith, M.J.W. Rodwell, J.D. Zimmerman, A.C. Gossard, S.R. Bank, Appl. Phys. Lett. 91, 192114 (2007).

    Google Scholar 

  68. J.J.M. Law, A.D. Carter, S. Lee, A.C. Gossard, M.J.W. Rodwell, IEEE Dev. Res. Conf. 199 (2012).

    Google Scholar 

  69. S.H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, S. Takagi, Appl. Phys. Express 4, 024201 (2011).

    Google Scholar 

  70. E. Ivana, Y.-J. Kong, S. Subramanian, Q. Zhou, J. Pan, Y.-C. Yeo, Solid State Electron. 78, 62 (2012).

    Google Scholar 

  71. S.H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, S. Takagi, IEEE Int. Electron Devices Mtg. 596 (2010).

    Google Scholar 

  72. L.L. Czornomaz, M. El Kazzi, M. Hopstaken, D. Caimi, P. Mächler, C. Rossel, M. Bjoerk, C. Marchiori, H. Siegwart, J. Fompeyrine, Solid State Electron. 74, 71 (2012).

    Google Scholar 

  73. M. Egard, L. Ohlsson, M. Arlelid, K.-M. Persson, M. Borg, F. Lenrick, R. Wallenberg, E. Lind, L.-E. Wernersson, IEEE Electron Devices Lett. 33, 369 (2012).

    Google Scholar 

  74. S. Gupta, X. Gong, R. Zhang, Y.-C. Yeo, S. Takagi, K. Saraswat, MRS Bull. in press (2014).

    Google Scholar 

  75. S. Oktyabrsky, in Fundamentals of III-V Semiconductor MOSFETs (Springer Verlag, New York), pp. 349–378.

  76. M. Yokoyama, S.H. Kim, R. Zhang, N. Taoka, Y. Urabe, T. Maeda, H. Takagi, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, S. Takagi, IEEE VLSI Tech. Symp. 60 (2011).

    Google Scholar 

  77. L. Czornomaz, N. Daix, D. Caimi, M. Sousa, R. Erni, M.D. Rossell, M. El-Kazzi, C. Rossel, C. Marchiori, E. Uccelli, M. Richter, H. Siegwart, J. Fompeyrine, IEEE Int. Electron Devices Mtg. 517 (2012).

    Google Scholar 

  78. J. Nah, H. Fang, C. Wang, K. Takei, M.H. Lee, E. Plis, S. Krishna, A. Javey, Nano Lett. 12, 3592 (2012).

    Google Scholar 

  79. J.G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, A. Lochtefeld, ECS Trans. 33, 963 (2010).

    Google Scholar 

  80. N. Waldron, G. Wang, N.D. Nguyen, T. Orzali, C. Merckling, G. Brammertz, P. Ong, G. Winderickx, G. Hellings, G. Eneman, M. Caymax, M. Meuris, N. Horiguchi, A. Thean, ECS Trans. 45, 115 (2012).

    Google Scholar 

  81. K. Tomioka, J. Motohisa, S. Hara, T. Fukui, Nano Lett. 8, 3475 (2008).

    Google Scholar 

  82. S. Plissard, G. Larrieu, X. Wallart, P. Caroff, Nanotechnology 22, 275602 (2011).

    Google Scholar 

  83. E. Alarcón-Lladó, S. Conesa-Boj, X. Wallart, P. Caroff, A. Fontcuberta i Morral, Nanotechnology 24, 405707 (2013).

    Google Scholar 

  84. S. Hertenberger, D. Rudolph, M. Bichler, F.F. Finley, G. Abstreiter, G. Koblmuller, J. Appl. Phys. 108, 114316 (2010).

    Google Scholar 

  85. S. Conesa-Boj, D. Kriegner, X.-L. Han, S. Plissard, X. Wallart, J. Stangl, A. Fontcuberta i Morral, P. Caroff, Nano Lett. 14, 326 (2014).

    Google Scholar 

  86. K. Tomioka, M. Yoshimura, T. Fukui, Nano Lett. 13, 5822 (2013).

    Google Scholar 

  87. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Google Scholar 

  88. J. Johansson, B.A. Wacaser, K.A. Dick, W. Seifert, Nanotechnology 17, S355 (2006).

    Google Scholar 

  89. P. Das Kanungo, H. Schmid, M.T. Bjö rk, L.M. Gignac, C. Breslin, J. Bruley, C.D. Bessire, H. Riel, Nanotechnology 24, 225304 (2013).

    Google Scholar 

  90. M. Borg, H. Schmid, K.E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, H. Riel, Nano Lett. 14 (4), 1914 (2014).

    Google Scholar 

  91. M. Radosavljevic, G. Dewey, D. Basu, J. Boardman, B. Chu-Kung, J.M. Fastenau, S. Kabehie, J. Kavalieros, V. Le, W.K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, H.W. Then, R. Chau, IEEE Int. Electron. Devices Mtg. 765 (2011).

    Google Scholar 

  92. J.J. Gu, X.W. Wang, H. Wu, J. Shao, A.T. Neal, M.J. Manfra, R.G. Gordon, P.D. Ye, IEEE Int. Electron Devices Mtg. 633 (2012).

    Google Scholar 

  93. J. Lin, D.A. Antoniadis, J.A. del Alamo, IEEE Int. Electron Devices Mtg. 757 (2012).

    Google Scholar 

  94. T.W. Kim, D.-H. Kim, D.H. Koh, H.M. Kwon, R.H. Baek, D. Veksler, C. Huffman, K. Matthews, S. Oktyabrsky, A. Greene, Y. Ohsawa, A. Ko, H. Nakajima, M. Takahashi, T. Nishizuka, H. Ohtake, S.K. Banerjee, S.H. Shin, D.-H. Ko, C. Kang, D. Gilmer, R.J.W. Hill, W. Maszara, C. Hobbs, P.D. Kirsch, IEEE Int. Electron Devices Mtg. 425 (2013).

    Google Scholar 

  95. D.-H. Kim, J.A. del Alamo, IEEE Int. Electron Devices Mtg. 719 (2008).

    Google Scholar 

  96. S. Roddaro, K. Nilsson, G. Astromskas, L. Samuelson, L.-E. Wernersson, O. Karlström, A. Wacker, Appl. Phys. Lett. 92, 253509 (2008).

    Google Scholar 

  97. P. Mensch, K.E. Moselund, S. Karg, E. Lörtscher, M.T. Björk, H. Riel, IEEE Trans. Nanotechnol. 12 (3), 279 (2013).

    Google Scholar 

  98. K.-M. Persson, E. Lind, A.W. Dey, C. Thelander, H. Sjoland, L.-E. Wernersson, IEEE Electron Devices Lett. 31 (5), 428 (2010).

    Google Scholar 

  99. K.-M. Persson, M. Berg, M.B. Borg, J. Wu, S. Johansson, J. Svensson, K. Jansson, E. Lind, L.-E. Wernersson, IEEE Trans. Electron Devices 60 (9), 2761 (2013).

    Google Scholar 

  100. X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, C.M. Lieber, Nano Lett. 7, 3214 (2007).

    Google Scholar 

  101. A.W. Dey, C. Thelander, E. Lind, K.A. Dick, B.M. Borg, M. Borgstrom, P. Nilsson, L.-E. Wernersson, IEEE Electron Devices Lett. 33, 791 (2012).

    Google Scholar 

  102. C.B. Zota, L.-E. Wernersson, E. Lind, IEEE Proc. Dev. Res. Conf. 209 (2014).

    Google Scholar 

  103. K. Tomioka, M. Yoshimura, T. Fukui, Nature 488, 189 (2012).

    Google Scholar 

  104. C. Thelander, L.E. Froberg, C. Rehnstedt, L. Samuelson, L.-E. Wernersson, IEEE Electron Devices Lett. 29, 206 (2008).

    Google Scholar 

  105. X. Zhao, J. Lin, C. Heidelberger, E.A. Fitzgerald, J.A. del Alamo, Int. Electron Devices Mtg. (IEEE, Washington DC, 2013), pp. 695–698.

    Google Scholar 

  106. C.B. Zota, L.-E. Wernersson, E. Lind, IEEE Electron Devices Lett. 35, 342 (2014).

    Google Scholar 

  107. S. Ghalamestani, M. Berg, K. Dick, L.-E. Wernersson, J. Cryst. Growth 332, 12 (2011).

    Google Scholar 

  108. S. Johansson, E. Memisevic, L.-E. Wernersson, IEEE Electron Devices Lett. 35, 518 (2014).

    Google Scholar 

  109. K.-M. Persson, M. Berg, H. Sjöland, E. Lind, L.-E. Wernersson, Electron. Lett. 50, 321 (2014).

    Google Scholar 

  110. L. De Michielis, L. Lattanzio, K. Moselund, H. Riel, A.M. Ionescu, IEEE Electron Devices Lett. 34 (6), 726 (2013).

    Google Scholar 

  111. A.S. Verhulst, W.G. Vandenberghe, K. Maex, S. de Gendt, M.M. Heyns, G. Groeseneken, IEEE Electron Devices Lett. 29, 1398 (2008).

    Google Scholar 

  112. S.O. Koswatta, S.J. Koester, W. Haensch, IEEE Trans. Electron Devices 57, 3222 (2010).

    Google Scholar 

  113. M. Luisier, G. Klimeck, IEEE Int. Electron Devices Mtg. 1 (2009).

    Google Scholar 

  114. L. Wang, E. Yu, Y. Taur, P. Asbeck, IEEE Electron Devices Lett. 31, 432 (2010).

    Google Scholar 

  115. J. Knoch, J. Appenzeller, IEEE Electron Devices Lett. 31, 305 (2010).

    Google Scholar 

  116. U.E. Avci, R. Rios, K. Kuhn, I.A. Young, IEEE Symp. VLSI Technol. Dig. 124 (2011).

    Google Scholar 

  117. G. Dewey, B. Chu-Kung, J. Boardman, J.M. Fastenau, J. Kavalieros, R. Kotlyar, W.K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H.W. Then, R. Chau, Tech. Dig. Int. Electron Devices Mtg. 785 (2011).

    Google Scholar 

  118. G. Zhou, Y. Lu, R. Li, Q. Zhang, Q. Liu, T. Vasen, H. Zhu, J.-M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, H. Xing, IEEE Electron Devices Lett. 33 (6), 782 (2012).

    Google Scholar 

  119. D. Mohata, B. Rajamohanan, T. Mayr, M. Hudait, J. Fastenau, D. Lubyshev, A.W.K. Liu, S. Datta, IEEE Electron Devices Lett. 33 (11), 1568 (2012).

    Google Scholar 

  120. G. Zhou, R. Li, T. Vasen, M. Qi, S. Chae, Y. Lu, Q. Zhang, H. Zhu, J.-M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, H. Xing, IEEE Int. Electron Devices Mtg. 32.6.1 (2012).

    Google Scholar 

  121. A. Dey, M. Borg, B. Ganjipour, M. Ek, K. Dick Thelander, E. Lind, C. Thelander, L.E. Wernersson, IEEE Electron Devices Lett. 34 (2), 211 (2013).

    Google Scholar 

  122. R. Bijesh, H. Liu, H. Madan, D. Mohata, W. Li, N.V. Nguyen, D. Gundlach, C.A. Richter, J. Maier, K. Wang, T. Clarke, J.M. Fastenau, D. Loubychev, W.K. Liu, V. Narayanan, S. Datta, IEEE Int. Electron Devices Mtg. 28.2.1 (2013).

    Google Scholar 

  123. H. Schmid, K.E. Moselund, M.T. Björk, M. Richter, H. Ghoneim, C.D. Bessire, H. Riel, IEEE 69th Device Res. Conf. Dig. 181 (2011).

    Google Scholar 

  124. K.E. Moselund, H. Schmid, C. Bessire, M.T. Björk, H. Ghoneim, H. Riel, IEEE Electron Devices Lett. 33 (10), 1453 (2012).

    Google Scholar 

  125. K. Tomioka, T. Fukui, Appl. Phys. Lett. 104, 073507 (2014).

    Google Scholar 

  126. H. Riel, K.E. Moselund, C. Bessire, M.T. Björk, A. Schenk, H. Ghoneim, H. Schmid, IEEE Intl. Electron Devices Mtg. 16.6.1 (2012).

    Google Scholar 

  127. R. Li, Y. Lu, G. Zhou, Q. Liu, S.D. Chae, T. Vasen, S.H. Wan, Q. Zhang, P. Fay, T. Kosel, M. Wistey, H. Xing, A. Seabaugh, IEEE Electron Devices Lett. 33, 363 (2012).

    Google Scholar 

  128. H. Zhao, Y. Chen, Y. Wang, F. Zhou, F. Xue, J. Lee, IEEE Trans. Electron Devices 58, 2990 (2011).

    Google Scholar 

  129. S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu, S. Datta, IEEE Intl. Electron Devices Mtg. 1– 3 (2009).

    Google Scholar 

  130. M. Noguchi, S.H. Kim, M. Yokoyama, S.M. Ji, O. Ichikawa, T. Osada, M. Hata, M. Takenaka, S. Takagi, IEEE Int. Electron Devices Mtg. 28.1.1 (2013).

    Google Scholar 

  131. K. Tomioka, M. Yoshimura, T. Fukui, 2012 Symposium on VLSI Technology, 47–48 (2012).

    Google Scholar 

  132. S.H. Kim, H. Kam, C. Hu, T.-J. K. Liu, VLSI Symposium Technical Digest, 178, 2009.

    Google Scholar 

  133. A.M. Walke, A. Vandooren, R. Rooyackers, D. Leonelli, A. Hikavyy, R. Loo, A.S. Verhulst, K.-H. Kao, C. Huyghebaert, G. Groeseneken, V.R. Rao, K.K. Bhuwalka, M.M. Heyns, N. Collaert, A.V.-Y. Thean, IEEE Trans. Electron Devices 61, 707 (2014).

    Google Scholar 

  134. K. Jeon, W.-Y. Loh, P. Patel, C.Y. Kang, J. Oh, A. Bowonder, C. Park, C.S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J. King Liu, C. Hu, 2010 Symposium on VLSI Technology, 121 (2010).

    Google Scholar 

  135. M.T. Björk, H. Schmid, C. Breslin, L. Gignac, H. Riel, J. Cryst. Growth, 344, 31 (2012).

    Google Scholar 

Download references

Acknowledgments

The work at IBM Research—Zurich has been supported by the European Union 7th Framework Programs Steeper (grant agreement no. 257267) and E2SWITCH (grant agreement no. 619509). The work at Lund University has been supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, and the European Union 7th Framework Program E2SWITCH (grant agreement no. 619509). Research at the National Taiwan University on high κ /III–V interfaces and III–V MOSFETs has been supported by the Ministry of Science and Technology (grant numbers NSC 102–2622-E-002–014 and NSC 102–2112-M-002–022-MY3), Ministry of Education, Taiwan, TSMC Corporation, and AOARD/US Air Force. Research at MIT on III–V MOSFETs has been supported by FCRP-MSD, Intel Corporation, ARL, SRC, NSF (award no. 0939514) and Sematech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Riel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riel, H., Wernersson, LE., Hong, M. et al. III–V compound semiconductor transistors—from planar to nanowire structures. MRS Bulletin 39, 668–677 (2014). https://doi.org/10.1557/mrs.2014.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.137

Navigation