Skip to main content
Log in

High-throughput calculations in the context of alloy design

  • Computational Design And Development Of Alloys
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Modern approaches to alloy design increasingly exploit the framework of computational thermodynamics and kinetics to guide the selection of alloy compositions and processing strategies, to achieve desired microstructures, and yield tailored properties. In this context, phase diagrams play a critical role and their assessment can represent a bottleneck in the design of new multicomponent systems. In recent years, it has become possible to accelerate this process through the coupling of the CALculation of PHAse Diagram (CALPHAD) computational thermodynamics framework with high-throughput quantum mechanical calculations. This article reviews recent developments and applications in this area, and discusses future opportunities for high-throughput calculations in the context of modeling kinetics, highlighting the important role of interfacial processes and atomic mobilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. National Research Council, Accelerating Technology Transition: Bridging the Valley of Death for Materials and Processes in Defense Systems (National Academies Press, Washington, DC, 2004).

    Google Scholar 

  2. National Science and Technology Council, Materials Genome Initiative for Global Competitiveness (Washington, DC, 2011).

  3. J.J. de Pablo, B. Jones, C. Lind, V. Ozolins, A.P. Ramirez, Curr. Opin. Solid State Mater. Sci. 18, 99 (2014).

    Google Scholar 

  4. T.M. Pollock, J.E. Allison, D.G. Backman, M.C. Boyce, M. Gersh, E.A. Holm, R. Lesar, M. Long, A.C. Powell IV, J.J. Schirra, D.D. Whitis, C. Woodward, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (National Academies Press, Washington, DC, 2008).

    Google Scholar 

  5. W. Xiong, G.B. Olson, NPJ Comput. Mater. 2, 14 (2016).

    Google Scholar 

  6. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12, 191 (2013).

    Google Scholar 

  7. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 11 (2013).

    Google Scholar 

  8. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65 (11), 1501 (2013).

    Google Scholar 

  9. K. Choudhary, Q. Zhang, A.C.E. Reid, S. Chowdhury, N.V. Nguyen, Z. Trautt, M.W. Newrock, F. Y. Congo, F. Tavazza, Sci. Data 5, 12 (2018).

    Google Scholar 

  10. S. Curtarolo, W. Setyawan, S.D. Wang, J.K. Xue, K.S. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58, 227 (2012).

    Google Scholar 

  11. L.M. Ghiringhelli, C. Carbogno, S. Levchenko, F. Mohamed, G. Huhs, M. Luders, M. Oliveira, M. Scheffler, NPJ Comput. Mater. 3, 9 (2017).

    Google Scholar 

  12. C.H. Liebscher, V.R. Radmilovic, U. Dahmen, N.Q. Vo, D.C. Dunand, M. Asta, G. Ghosh, Acta Mater. 92, 220 (2015).

    Google Scholar 

  13. L. Kaufman, CALPHAD 25, 141 (2001).

    Google Scholar 

  14. C.E. Campbell, U.R. Kattner, Z.-K. Liu, Scripta Mater. 70, 7 (2014).

    Google Scholar 

  15. U.R. Kattner, JOM 49, 14 (1997).

    Google Scholar 

  16. J.-O. Andersson, A.F. Guillermet, M. Hillert, B. Jansson, B. Sundman, Acta Metall. 34, 437 (1986).

    Google Scholar 

  17. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.-A. Van Ende, CALPHAD 54, 35 (2016).

    Google Scholar 

  18. J.O. Andersson, T. Helander, L. Hoglund, P. F. Shi, B. Sundman, CALPHAD 26, 273 (2002).

    Google Scholar 

  19. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates, CALPHAD 33, 328 (2009).

    Google Scholar 

  20. B. Sundman, U.R. Kattner, C. Sigli, M. Stratmann, R.L. Tellier, M. Palumbo, S.G. Fries, Comput. Mater. Sci. 125, 188 (2016).

    Google Scholar 

  21. R.A. Otis, Z.-K. Liu, J. Open Res. Softw. 5, 1 (2017).

    Google Scholar 

  22. N. Saunders, P. Miodownik, CALPHAD: A Comprehensive Guide (Elsevier, New York, 1998).

    Google Scholar 

  23. Z.K. Liu, J. Phase Equilib. Diffus. 30, 517 (2009).

    Google Scholar 

  24. A. van de Walle, C. Nataraj, Z.-K. Liu, CALPHAD 61, 173 (2018).

    Google Scholar 

  25. T. Abe, K.S. Hashimoto, Y. Sawada, M. Palumbo, Y. Ogura (2007), http:// cpddb.nims.go.jp/cpddb/periodic.htm.

  26. R.A. Otis, Z.-K. Liu, JOM 69, 886 (2017).

    Google Scholar 

  27. O. Senkov, J. Miller, D.B. Miracle, C. Woodward, CALPHAD 50, 32 (2015).

    Google Scholar 

  28. A. Abu-Odeh, R. Arroyave, E. Galvan, T. Kirk, R. Malak, H. Mao, Q. Chen, P. Mason, Acta Mater. 152, 41 (2018).

    Google Scholar 

  29. A. van de Walle, R. Sun, Q.-J. Hong, S. Kadkhodaei, CALPHAD 58, 70 (2017).

    Google Scholar 

  30. J.-C. Crivello, R. Souques, A. Breidi, N. Bourgeois, J.-M. Joubert, CALPHAD 51, 233 (2015).

    Google Scholar 

  31. A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).

    Google Scholar 

  32. A. van de Walle, P. Tiwary, M.M. de Jong, D.L. Olmsted, M.D. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, Z.-K. Liu, CALPHAD 42, 13 (2013).

    Google Scholar 

  33. R. Kikuchi, Phys. Rev. 81, 988 (1951).

    Google Scholar 

  34. A. van de Walle, G. Ceder, Rev. Mod. Phys. 74, 11 (2002).

    Google Scholar 

  35. Q.-J. Hong, A. van de Walle, J. Chem. Phys. 139, 094114 (2013).

    Google Scholar 

  36. Q.-J. Hong, A. van de Walle, Phys. Rev. B Condens. Matter 92, 020104(R) (2015).

    Google Scholar 

  37. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen, Z.-K. Liu, Calphad 28, 79 (2004).

    Google Scholar 

  38. T. Hickel, U.R. Kattner, S.G. Fries, Phys. Status Solidi B 251, 9 (2014).

    Google Scholar 

  39. V. Ozolins, Phys. Rev. Lett. 102, 065702 (2009).

    Google Scholar 

  40. P.J. Craievich, J.M. Sanchez, R.E. Watson, M. Weinert, Phys. Rev. B Condens. Matter 55, 787 (1997).

    Google Scholar 

  41. A. van de Walle, Q.-J. Hong, S. Kadkhodaei, R. Sun, Nat. Commun. 6, 7559 (2015).

    Google Scholar 

  42. A. van de Walle, S. Kadkhodaei, R. Sun, Q.-J. Hong, Phys. Rev. B Condens. Matter 95, 144113 (2017).

    Google Scholar 

  43. A. van de Walle, CALPHAD 60, 1 (2018).

    Google Scholar 

  44. A.T. Dinsdale, CALPHAD 15, 317 (1991).

    Google Scholar 

  45. A. Borgenstam, A. Engstrom, L. Hoglund, J. Agren, J. Phase Equilib. 21, 269 (2000).

    Google Scholar 

  46. A.C.E. Silva, J. Agren, M.T. Clavaguera-Mora, D. Djurovic, T. Gomez-Acebo, B.J. Lee, Z.K. Liu, P. Miodownik, H.J. Seifert, CALPHAD 31, 53 (2007).

    Google Scholar 

  47. H. Wu, T. Mayeshiba, D. Morgan, Sci. Data 3, 11 (2016).

    Google Scholar 

  48. A. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, 4 (2005).

    Google Scholar 

  49. A. Van der Ven, G. Ceder, M. Asta, P.D. Tepesch, Phys. Rev. B Condens. Matter 64, 17 (2001).

    Google Scholar 

  50. A. Van der Ven, H.C. Yu, G. Ceder, K. Thornton, Prog. Mater. Sci. 55, 61 (2010).

    Google Scholar 

  51. Q.C. Xu, A. Van der Ven, Phys. Rev. B Condens. Matter 81, 5 (2010).

    Google Scholar 

  52. J. Bhattacharya, A. Van der Ven, Phys. Rev. B Condens. Matter 83, 9 (2011).

    Google Scholar 

  53. Y. Mishin, M. Asta, J. Li, Acta Mater. 58, 1117 (2010).

    Google Scholar 

  54. S. Lu, J. Agren, L. Vitos, Acta Mater. 156, 20 (2018).

    Google Scholar 

  55. A. Sangghaleh, M.J. Demkowicz, Comput. Mater. Sci. 145, 35 (2018).

    Google Scholar 

  56. Q. Zhu, A. Samanta, B.X. Li, R.E. Rudd, T. Frolov, Nat. Commun. 9, 9 (2018).

    Google Scholar 

  57. J.L. Cheng, J. Luo, K.S. Yang, Comput. Mater. Sci. 155, 92 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel van de Walle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van de Walle, A., Asta, M. High-throughput calculations in the context of alloy design. MRS Bulletin 44, 252–256 (2019). https://doi.org/10.1557/mrs.2019.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.71

Navigation