Skip to main content
Log in

The underappreciated lone pair in halide perovskites underpins their unusual properties

  • Halide Perovskite Opto- and Nanoelectronic Materials and Devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The presence of 6s2 (5s2) lone-pair electrons on the B-site Pb (Sn) in all-inorganic and hybrid halide ABX3 perovskites distinguishes these materials from the familiar tetrahedral semiconductors traditionally employed in optoelectronics and is key to many of their appealing properties. These electrons are stereochemically active, albeit often in a hidden fashion, resulting in unusual and highly anharmonic lattice dynamics that are linked to many of the special optoelectronic properties displayed by this material class. This article describes the connections between this atypical electronic configuration and the electronic structure and lattice dynamics of these compounds. We illustrate how the lone pair leads to favorable bandwidths and band alignments, mobile holes, large ionic dielectric response, large positive thermal expansion, and even possibly defect-tolerant electronic transport. Taken together, the evidence suggests that other high-performing semiconductors may be found among compounds with lone-pair-bearing cations in high symmetry environments and a high degree of connectivity between atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. D.A. Egger, A. Bera, D. Cahen, G. Hodes, T. Kirchartz, L. Kronik, R. Lovrincic, A.M. Rappe, D.R. Reichman, O. Yaffe, Adv. Mater. 30, 1800691 (2018).

    Google Scholar 

  2. M. Kulbak, D. Cahen, G. Hodes, J. Phys. Chem. Lett. 6, 2452 (2015).

    Google Scholar 

  3. G.E. Eperon, G.M. Paterno, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, J. Mater. Chem. A 3, 19688 (2015).

    Google Scholar 

  4. H. Zhu, M.T. Trinh, J. Wang, Y. Fu, P. P. Joshi, K. Miyata, S. Jin, X.-Y. Zhu, Adv. Mater. 29, 1603072 (2017).

    Google Scholar 

  5. R.E. Beal, D.J. Slotcavage, T. Leijtens, A.R. Bowring, R.A. Belisle, W.H. Nguyen, G.F. Burkhard, E.T. Hoke, M.D. McGehee, J. Phys. Chem. Lett. 7, 746 (2016).

    Google Scholar 

  6. S. Dastidar, S. Li, S.Y. Smolin, J.B. Baxter, A.T. Fafarman, ACS Energy Lett. 2, 2239 (2017).

    Google Scholar 

  7. E.M. Hutter, R.J. Sutton, S. Chandrashekar, M. Abdi-Jalebi, S.D. Stranks, H.J. Snaith, T.J. Savenije, ACS Energy Lett. 2, 1901 (2017).

    Google Scholar 

  8. N.V. Sidgwick, H.M. Powell, Proc. R. Soc. A 176, 153 (1940).

    Google Scholar 

  9. R.J. Gillespie, R.S. Nyholm, Q. Rev. Chem. Soc. 11, 339 (1957).

    Google Scholar 

  10. J. Galy, G. Meunier, S. Andersson, A. Åström, J. Solid State Chem. 13, 142 (1975).

    Google Scholar 

  11. J.D. Swalen, J.A. Ibers, J. Chem. Phys. 36, 1914 (1962).

    Google Scholar 

  12. J.E. Jaffe, A. Zunger, Phys. Rev. B 28, 5822 (1983).

    Google Scholar 

  13. M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, N. Miura, Physica B 201, 427 (1994).

    Google Scholar 

  14. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582 (2015).

    Google Scholar 

  15. L. Huang, W.R.L. Lambrecht, Phys. Rev. B 88, 165203 (2013).

    Google Scholar 

  16. C.N. Savory, A. Walsh, D.O. Scanlon, ACS Energy Lett. 1, 949 (2016).

    Google Scholar 

  17. M.G. Goesten, R. Hoffmann, J. Am. Chem. Soc. 140, 12996 (2018).

    Google Scholar 

  18. G. Natta, L. Passerini, Gazz. Chim. Ital. 58, 472 (1928).

    Google Scholar 

  19. D.O. Scanlon, Phys. Rev. B 87, 161201 (2013).

    Google Scholar 

  20. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, J. Am. Chem. Soc. 138, 2138 (2016).

    Google Scholar 

  21. E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Chem. Mater. 28, 1348 (2016).

    Google Scholar 

  22. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, J. Phys. Chem. Lett. 7, 1254 (2016).

    Google Scholar 

  23. M.W. Stoltzfus, P.M. Woodward, R. Seshadri, J.-H. Klepeis, B. Bursten, Inorg. Chem. 46, 3839 (2007).

    Google Scholar 

  24. A. Walsh, D.J. Payne, R.G. Egdell, G.W. Watson, Chem. Soc. Rev. 40, 4455 (2011).

    Google Scholar 

  25. Z. Xiao, K.-Z. Du, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, J. Am. Chem. Soc. 139, 6054 (2017).

    Google Scholar 

  26. Z. Deng, F. Wei, S. Sun, G. Kieslich, A.K. Cheetham, P.D. Bristowe, J. Mater. Chem. A 4, 12025 (2016).

    Google Scholar 

  27. D.G. Tuck, Chem. Soc. Rev. 22, 269 (1993).

    Google Scholar 

  28. J. Lin, H. Chen, Y. Gao, Y. Cai, J. Jin, A.S. Etman, J. Kang, T. Lei, Z. Lin, M.C. Folgueras, L.N. Quan, Q. Kong, M. Sherburne, M. Asta, J. Sun, M.F. Toney, J. Wu, P. Yang, Proc. Natl. Acad. Sci. U.S.A. 116, 23404 (2019).

    Google Scholar 

  29. K.M. McCall, D. Friedrich, D.G. Chica, W. Cai, C.C. Stoumpos, G.C.B. Alexander, S. Deemyad, B.W. Wessels, M.G. Kanatzidis, Chem. Mater. 31, 9554 (2019).

    Google Scholar 

  30. X. Tan, P.W. Stephens, M. Hendrickx, J. Hadermann, C.U. Segre, M. Croft, C.-J. Kang, Z. Deng, S.H. Lapidus, S.W. Kim, C. Jin, G. Kotliar, M. Greenblatt, Chem. Mater. 31, 1981 (2019).

    Google Scholar 

  31. T. Thao Tran, J.R. Panella, J.R. Chamorro, J.R. Morey, T.M. McQueen, Mater. Horiz. 4, 688 (2017).

    Google Scholar 

  32. G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, M.B. Johnston, L.M. Herz, H.J. Snaith, F. Giustino, J. Phys. Chem. Lett. 8, 772 (2017).

    Google Scholar 

  33. F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D.M. Evans, M.A. Carpenter, P.D. Bristowe, A.K. Cheetham, Mater. Horiz. 3, 328 (2016).

    Google Scholar 

  34. Z. Deng, F. Wie, F. Brivio, Y. Wu, S. Sun, P.D. Bristowe, A.K. Cheetham, J. Phys. Chem. Lett. 8, 5015 (2017).

    Google Scholar 

  35. J. Brgoch, A.J. Lehner, M. Chabinyc, R. Seshadri, J. Phys. Chem. C 118, 27721 (2014).

    Google Scholar 

  36. A.J. Lehner, H. Wang, D.H. Fabini, C.D. Liman, C.-A. Hébert, E.E. Perry, M. Wang, G.C. Bazan, M.L. Chabinyc, R. Seshadri, Appl. Phys. Lett. 107, 131109 (2015).

    Google Scholar 

  37. B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi, Chem. Mater. 27, 5622 (2015).

    Google Scholar 

  38. A.J. Lehner, D.H. Fabini, H.A. Evans, C.-A. Hébert, S.R. Smock, J. Hu, H. Wang, J.W. Zwanziger, M.L. Chabinyc, R. Seshadri, Chem. Mater. 27, 7137 (2015).

    Google Scholar 

  39. R.E. Brandt, J.R. Poindexter, P. Gorai, R.C. Kurchin, R.L.Z. Hoye, L. Nienhaus, M.W.B. Wilson, J.A. Polizzotti, R. Sereika, R. Zaltauskas, L.C. Lee, J.L. MacManus-Driscoll, M. Bawendi, V. Stevanovic, T. Buonassisi, Chem. Mater. 29, 4667 (2017).

    Google Scholar 

  40. Z. Xiao, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Mater. Horiz. 4, 206 (2017).

    Google Scholar 

  41. S. Maintz, V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, J. Comput. Chem. 37, 1030 (2016).

    Google Scholar 

  42. A. Zakutayev, C.M. Caskey, A.N. Fioretti, D.S. Ginley, J. Vidal, V. Stevanovic, E. Tea, S. Lany, J. Phys. Chem. Lett. 5, 1117 (2014).

    Google Scholar 

  43. W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).

    Google Scholar 

  44. R.E. Brandt, V. Stevanovic, D.S. Ginley, T. Buonassisi, MRS Commun. 5, 265 (2015).

    Google Scholar 

  45. A. Walsh, D.O. Scanlon, S. Chen, X.G. Gong, S.-H. Wei, Angew. Chem. Int. Engl. 54, 1791 (2015).

    Google Scholar 

  46. C. Gehrmann, D.A. Egger, Nat. Commun. 10, 3141 (2019).

    Google Scholar 

  47. U. Schwarz, F. Wagner, K. Syassen, H. Hillebrecht, Phys. Rev. B 53, 12545 (1996).

    Google Scholar 

  48. C. Yu, Z. Chen, J.J. Wang, W. Pfenninger, N. Vockic, J.T. Kenney, K. Shum, J. Appl. Phys. 110, 063526 (2011).

    Google Scholar 

  49. A.G. Kontos, A. Kaltzoglou, M.K. Arfanis, K.M. McCall, C.C. Stoumpos, B.W. Wessels, P. Falaras, M.G. Kanatzidis, J. Phys. Chem. C 122, 26353 (2018).

    Google Scholar 

  50. D.H. Fabini, G. Laurita, J.S. Bechtel, C.C. Stoumpos, H.A. Evans, A.G. Kontos, Y.S. Raptis, P. Falaras, A. Van der Ven, M.G. Kanatzidis, R. Seshadri, J. Am. Chem. Soc. 138, 11820 (2016).

    Google Scholar 

  51. I. Swainson, L. Chi, J.-H. Her, L. Cranswick, P. Stephens, B. Winkler, D.J. Wilson, V. Milman, Acta Crystallogr. B 66, 422 (2010).

    Google Scholar 

  52. S. Govinda, B.P. Kore, M. Bokdam, P. Mahale, A. Kumar, S. Pal, B. Bhattacharyya, J. Lahnsteiner, G. Kresse, C. Franchini, A. Pandey, D.D. Sarma, J. Phys. Chem. Lett. 8, 4113 (2017).

    Google Scholar 

  53. K. Frohna, T. Deshpande, J. Harter, W. Peng, B.A. Barker, J.B. Neaton, S.G. Louie, O.M. Bakr, D. Hsieh, M. Bernardi, Nat. Commun. 9, 1829 (2018).

    Google Scholar 

  54. W.M.A. Smit, G.J. Dirksen, D.J. Stufkens, J. Phys. Chem. Solids 51, 189 (1990).

    Google Scholar 

  55. H. Ishida, H. Maeda, A. Hirano, Y. Kubozono, Y. Furukawa, Phys. Status Solidi A 159, 277 (1997).

    Google Scholar 

  56. R.J. Worhatch, H.-J. Kim, I.P. Swainson, A.L. Yonkeu, S.J.L. Billinge, Chem. Mater. 20, 1272 (2008).

    Google Scholar 

  57. G. Laurita, D.H. Fabini, C.C. Stoumpos, M.G. Kanatzidis, R. Seshadri, Chem. Sci. 8, 5628 (2017).

    Google Scholar 

  58. A. Marronnier, H. Lee, B. Geffroy, J. Even, Y Bonnassieux, G. Roma, J. Phys. Chem. Lett. 8, 2659 (2017).

    Google Scholar 

  59. S.K. Radha, C. Bhandari, W.R.L. Lambrecht, Phys. Rev. Mater. 2, 063605 (2018).

    Google Scholar 

  60. R.C. Remsing, M.L. Klein, arXiv:1910.03737 (2019).

  61. O. Yaffe, Y. Guo, L.Z. Tan, D.A. Egger, T. Hull, C.C. Stoumpos, F. Zheng, T.F Heinz, L. Kronik, M.G. Kanatzidis, J.S. Owen, A.M. Rappe, M.A. Pimenta, L.E. Brus, Phys. Rev. Lett. 118, 136001 (2017).

    Google Scholar 

  62. X. Wu, L.Z. Tan, X. Shen, T. Hu, K. Miyata, M.T. Trinh, R. Li, R. Coffee, S. Liu, D.A. Egger, I. Makasyuk, Q. Zheng, A. Fry, J.S. Robinson, M.D. Smith, B. Guzelturk, H.I. Karunadasa, X. Wang, X. Zhu, L. Kronik, A.M. Rappe, A.M. Lindenberg, Sci. Adv. 3, e1602388 (2017).

    Google Scholar 

  63. U.V. Waghmare, N.A. Spaldin, H.C. Kandpal, R. Seshadri, Phys. Rev. B 67, 125111 (2003).

    Google Scholar 

  64. M. Kim, J. Im, A.J. Freeman, J. Ihm, H. Jin, Proc. Natl. Acad. Sci. U.S.A. 111, 6900 (2014).

    Google Scholar 

  65. J.N. Wilson, J.M. Frost, S.K. Wallace, A. Walsh, APL Mater 7, 010901 (2019).

    Google Scholar 

  66. A. Poglitsch, D. Weber, J. Chem. Phys. 87, 6373 (1987).

    Google Scholar 

  67. N. Onoda-Yamamuro, T. Matsuo, H. Suga, J. Phys. Chem. Solids 53, 935 (1992).

    Google Scholar 

  68. K. Gesi, Ferroelectrics 203, 249 (1997).

    Google Scholar 

  69. D.H. Fabini, T. Hogan, H.A. Evans, C.C. Stoumpos, M.G. Kanatzidis, R. Seshadri, J. Phys. Chem. Lett. 7, 376 (2016).

    Google Scholar 

  70. M. Sendner, P.K. Nayak, D.A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik, H.J. Snaith, A. Pucci, R. Lovrincic, Mater. Horiz. 3, 613 (2016).

    Google Scholar 

  71. I. Anusca, S. Balčiūnas, P. Gemeiner, Š. Svirskas, M. Sanlialp, G. Lackner C. Fettkenhauer, J. Belovickis, V. Samulionis, M. Ivanov, B. Dkhil, J. Banys, V.V. Shvartsman, D.C. Lupascu, Adv. Energy Mater. 7, 1700600 (2017).

    Google Scholar 

  72. D.H. Fabini, T.A. Siaw, C.C. Stoumpos, G. Laurita, D. Olds, K. Page, J.G. Hu, M.G. Kanatzidis, S. Han, R. Seshadri, J. Am. Chem. Soc. 139, 16875 (2017).

    Google Scholar 

  73. S. Govinda, B.P. Kore, D. Swain, A. Hossain, C. De, T.N. Guru Row, D.D. Sarma, J. Phys. Chem. C 122, 13758 (2018).

    Google Scholar 

  74. E.C. Schueller, G. Laurita, D.H. Fabini, C.C. Stoumpos, M.G. Kanatzidis R. Seshadri, Inorg. Chem. 57, 695 (2018).

    Google Scholar 

  75. D.P Almond, C.R. Bowen, J. Phys. Chem. Lett. 6, 1736 (2015).

    Google Scholar 

  76. K.F Young, H.P.R. Frederikse, J. Phys. Chem. Ref. Data 2, 313 (1973).

    Google Scholar 

  77. X.-Y Zhu, V. Podzorov, J. Phys. Chem. Lett. 6, 4758 (2015).

    Google Scholar 

  78. M.-H. Du, D.J. Singh, Phys. Rev. B 81, 144114 (2010).

    Google Scholar 

  79. M.H. Du, J. Mater. Chem. A, 2, 9091 (2014).

    Google Scholar 

  80. W. Siemons, M.A. McGuire, V.R. Cooper, M.D. Biegalski, I.N. Ivanov, G.E. Jellison, L.A. Boatner, B.C. Sales, H.M. Christen, Adv. Mater. 24, 3965 (2012).

    Google Scholar 

  81. E.S. Božin, C.D. Malliakas, P. Souvatzis, T. Proffen, N.A. Spaldin, M.G. Kanatzidis, S.J.L. Billinge, Science 330, 1660 (2010).

    Google Scholar 

  82. I. Chung, J.-H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, M.G. Kanatzidis, J. Am. Chem. Soc. 134, 8579 (2012).

    Google Scholar 

  83. D.M. Trots, S.V. Myagkota, J. Phys. Chem. Solids 69, 2520 (2008).

    Google Scholar 

  84. R.J. Sutton, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, F. Giustino, H.J. Snaith, ACS Energy Lett. 3, 1787 (2018).

    Google Scholar 

  85. C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z. Liu, M. Sebastian, J. Im, T.C. Chasapis, A.C. Wibowo, D.Y Chung, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis, Cryst. Growth Des. 13, 2722 (2013).

    Google Scholar 

  86. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).

    Google Scholar 

  87. I.P Swainson, R.P Hammond, C. Soullière, O. Knop, W. Massa, J. Solid State Chem. 176, 97 (2003).

    Google Scholar 

  88. D.H. Fabini, C.C. Stoumpos, G. Laurita, A. Kaltzoglou, A.G. Kontos, P. Falaras, M.G. Kanatzidis, R. Seshadri, Angew. Chem. Int. Ed. Engl. 55, 15392 (2016).

    Google Scholar 

  89. P. Becker, P. Seyfried, H. Siegert, Z Phys. B 48, 17 (1982).

    Google Scholar 

  90. A.L. Goodwin, M. Calleja, M.J. Conterio, M.T. Dove, J.S.O. Evans, D.A. Keen, L. Peters, M.G. Tucker, Science 319, 794 (2008).

    Google Scholar 

  91. K. Kuhar, M. Pandey, K.S. Thygesen, K.W. Jacobsen, ACS Energy Lett. 3, 436 (2018).

    Google Scholar 

  92. D.H. Fabini, M. Koerner, R. Seshadri, Chem. Mater. 31, 1561 (2019).

    Google Scholar 

  93. H. Jin, H. Zhang, J. Li, T. Wang, L. Wan, H. Guo, Y. Wei, J. Phys. Chem. Lett. 10, 5211 (2019).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Grant No. SC0012541. D.H.F. gratefully acknowledges financial support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Fabini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabini, D.H., Seshadri, R. & Kanatzidis, M.G. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS Bulletin 45, 467–477 (2020). https://doi.org/10.1557/mrs.2020.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.142

Navigation