Skip to main content
Log in

The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors

  • Material Matter
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article provides an overview of the fabrication of epitaxial, biaxially aligned buffer layers on rolling-assisted biaxially textured substrates (RABiTS) as templates for YBCO films carrying high critical current densities.The RABiTS technique uses standard thermomechanical processing to obtain long lengths of flexible, biaxially oriented substrates with smooth surfaces.The strong biaxial texture of the metal is conferred to the superconductor by the deposition of intermediate metal and/or oxide layers that serve both as a chemical and a structural buffer.Epitaxial YBCO films with critical current densities exceeding 3 106A/cm2at 77K in self-field have been grown on RABiTS using a variety of techniques and demonstrate magnetic-field-dependent critical current values that are similar to those of epitaxial films on single-crystal ceramic substrates.The RABiTS architecture most commonly used consists of a CeO2 (sputtered)/YSZ (sputtered)/Y203 (e-beam)/Ni-W alloy.

The desired texture of the base metal has been achieved in 100 m lengths and 10cm widths.Scaleable and cost-effective techniques are also being pursued to deposit the epitaxial multilayers.The results discussed here demonstrate that this technique is a viable route for the fabrication of long lengths of high-critical-current-density wire capable of carrying high currents in magnetic fields and at temperatures accessible by cooling with relatively inexpensive liquid nitrogen (up through the 77K range).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Barrett and T.B. Massalski Structure of Metals (McGraw Hill, New York, 1966).

    Google Scholar 

  2. H.J. Bunge and C. Esling Quantitative Texture Analysis (DGM Metallurgy Information, Oberursel, Germany, 1982).

    Google Scholar 

  3. H.R. Wenk and U.F. Kocks Metall. Trans. A 18A (1987) p.1083.

    Article  Google Scholar 

  4. F.C. Frank Metall. Trans. A 19A (1988) p.403.

    Article  Google Scholar 

  5. A. Goyal in Second Generation HTS Conductors, edited by A. Goyal (Plenum, New York, 2004) in press.

  6. A. Goyal D.P. Norton J.D. Budai M. Paranthaman, E.D. Specht D.M. Kroeger D.K. Christen Q. He B. Saffian F.A. List D.F. Lee P.M. Martin C.E. Klabunde E. Hatfield and V. S. Sikka Appl. Phys. Lett. 69 (1996) p.1795.

    Article  CAS  Google Scholar 

  7. A. Goyal J.D. Budai D.M. Kroeger D.P. Norton, E.D. Specht and D.K. Christen U.S Patent No. 5,739,086 (April 14, 1998); A., Goyal, J.D. Budai, D.M. Kroeger, D.P. Norton, E.D. Specht and D.K. Christen U.S Patent No. 5,741,377 (April 21, 1998); V. Selvaman-ickam, A., Goyal and D.M., Kroeger U.S Patent No.5,846,912 (December 8, 1998); A., Goyal, J.D., Budai, D.M., Kroeger, D.P., Norton, E.D., Specht and D.K., Christen U.S Patent No. 5,898,020 (April 27, 1999).

    Google Scholar 

  8. A. Goyal D.P. Norton D.M. Kroeger D.K. Christen, M. Paranthaman E.D. Specht J.D. Budai Q. He B. Saffian F.A. List D.F. Lee E. Hatfield P.M. Martin C.E. Klabunde J. Mathis, and C. Park J. Mater. Res. 12 (1997) p.2924.

    Article  CAS  Google Scholar 

  9. A. Goyal D.P. Norton D.K. Christen E.D. Specht, M. Paranthaman D.M. Kroeger J.D. Budai Q. He F.A. List R. Feenstra H.R. Kerchner D.F. Lee P.M. Martin E. Hatfield P.M. Martin J. Mathis and C. Park Appl. Supercond. 4 (1996) p.403.

    Article  CAS  Google Scholar 

  10. A. Goyal R. Feenstra M. Paranthaman J.R. Thompson B.Y. Kang C. Cantoni D.F. Lee F.A. List P.M. Martin E. Lara-Curzio, C. Stevens D.M. Kroeger M. Kowalewski E.D. Specht T. Aytug S. Sathyamurthy R.K. Williams and R.E. Ericson Physica C 382 (2002) p.251.

    Article  Google Scholar 

  11. E.D. Specht A. Goyal D.F. Lee F.A. List D.M. Kroeger M. Paranthaman R.K. Williams and D.K. Christen Supercond. Sci. and Tech. 11 (1998) p.945.

    Article  CAS  Google Scholar 

  12. A. Goyal D.F. Lee F.A. List E.D. Specht R. Feenstra M. Paranthaman X. Cui S.W. Lu P.M. Martin D.M. Kroeger D.K. Christen B.W. Kang D.P. Norton C. Park D.T. Verebelyi J.R. Thompson R.K. Williams T. Aytug and C. Cantoni Physica C 357–360 (2001) p.903.

    Article  Google Scholar 

  13. J.R. Thompson A. Goyal D.K. Christen and D.M. Kroeger Physica C 370 (2001) p. 169.

    Article  Google Scholar 

  14. A.O. Ijaduola J.R. Thompson A. Goyal C.L.H. Thieme and K. Marken Physica C 403 (2004) p.163.

    Article  CAS  Google Scholar 

  15. A. Goyal E.D. Specht D.M. Kroeger and M. Paranthaman U.S. Patent No.5,964,966 (October 12, 1999); A., Goyal, E.D., Specht, D.M., Kroeger, and M., Paranthaman, U.S. Patent No.6,106,615 (August 22, 2000); A., Goyal, D.M., Kroeger, M., Paranthaman, D.F., Lee, R., Feenstra, and D.P., Norton, U.S. Patent No. 6,451,450 (September 17, 2002).

    Google Scholar 

  16. I. Kim P.N. Barnes A. Goyal S.A. Barnett R. Biggers G. Kozlowski C. Varanasi I. Maartens R. Nekkanti T. Peterson T. Haughan and S. Sambasivan Physica C 377 (2002) p.227.

    Article  CAS  Google Scholar 

  17. C. Cantoni D.K. Christen M. Varela J.R. Thompson S.J. Pennycook E.D. Specht and A. Goyal J.Mater. Res. 18 (2003) p.2387.

    Article  CAS  Google Scholar 

  18. M.P. Paranthaman T. Aytug H.Y. Zhai H.M. Christen D.K. Christen A. Goyal L. Heatherly and D.M. Kroeger Ceramic Trans. 149 (2004) p.33.

    CAS  Google Scholar 

  19. M. Paranthaman A. Goyal D.M. Kroeger and F.A. List III, U.S. Patent Nos. 6,261,704 (July 17, 2001) and 6,468,591 (October 22, 2002).

    Google Scholar 

  20. M. Paranthaman S.S. Shoup D.B. Beach R.K. Williams and E.D. Specht Mater. Res. Bull. 32 (1997) p.1697.

    Article  CAS  Google Scholar 

  21. K. Matsumoto A. Takechi T. Ono I. Hirabayashi and K. Osamura Physica C 392 (2003) p.830.

    Article  CAS  Google Scholar 

  22. K. Matsumoto S.B. Kim J.G. Wen I. Hirabayashi T. Watanabe N. Uno and M. Ikeda IEEE Trans. Appl. Supercond. 9 (1999) p.1539.

    Article  Google Scholar 

  23. J.W. Sun H.S. Kim B.K. Ji H.W. Park G.W. Hong C.H. Jung S.D. Park B.H. Jun and C.J. Kim IEEE Trans. Appl. Supercond. 13 (2003) p.2539.

    Article  CAS  Google Scholar 

  24. K. Matsumoto I. Hirabayashi and K. Osamura Physica C 378 (2002) p.922.

    Article  Google Scholar 

  25. M. Paranthaman A. Goyal D.P. Norton F.A. List E.D. Specht D.K. Christen D.M. Kroeger J.D. Budai Q. He B. Saffian D.F. Lee and P.M. Martin in Proc. 9th Intl. Symp. on Superconductivity: Advances in Superconductivity IX (ISS’96), Vol.2, edited by S. Nakajima and M. Murakami (Springer-Verlag, Tokyo, 1996) p.669.

    Google Scholar 

  26. M. Paranthaman A. Goyal F.A. List E.D. Specht D.F. Lee P.M. Martin Q. He D.K. Christen, D.P. Norton J.D. Budai and D.M. Kroeger Physica C 275 (1997) p.266.

    Article  Google Scholar 

  27. Q. He D.K. Christen J.D. Budai E.D. Specht D.F. Lee A. Goyal D.P. Norton M. Paranthaman, F.A. List and D.M. Kroeger Physica C 275 (1997) p.155.

    Article  Google Scholar 

  28. T. Aytug J.Z. Wu C. Cantoni D.T. Verebelyi E.D. Specht M. Paranthaman D.P. Norton D.K. Christen R.E. Ericson and C.L. Thomas Appl. Phys. Lett. 76 (2000) p.760.

    Article  CAS  Google Scholar 

  29. J.T. Dawley R.J. Ong and P.G. Clem J.Mater. Res. 17 (2002) 1678.

    Article  CAS  Google Scholar 

  30. S. Sathyamurthy and K. Salama Physica C 329 (2000) p.58.

    Article  CAS  Google Scholar 

  31. M.P. Paranthaman T. Aytug and D.K. Christen U.S. Patent No. 6,617,283 (September 9, 2003).

    Google Scholar 

  32. M.P. Paranthaman T. Aytug H.Y. Zhai S. Sathyamurthy H.M. Christen P.M. Martin D.K. Christen R.E. Ericson and C.L. Thomas in Materials for High-Temperature Superconductor Technologies, edited by M.P. Paranthaman M.W. Rupich K. Salama J. Mannhart and T. Hasegawa (Mater. Res. Soc. Symp. Proc. 689, Warrendale, PA, 2002) p.323.

  33. T. Aytug M. Paranthaman B.W. Kang S. Sathyamurthy A. Goyal and D.K. Christen Appl. Phys. Lett. 79 (2001) p.2205.

    Article  CAS  Google Scholar 

  34. T. Aytug A. Goyal N. Rutter M. Paranthaman J.R. Thompson H.Y. Zhai and D.K. Christen J.Mater. Res. 18 (2003) p.872.

    Article  CAS  Google Scholar 

  35. M. Paranthaman T.G. Chirayil F.A. List X. Cui A. Goyal D.F. Lee E.D. Specht P.M. Martin R.K. Williams D.M. Kroeger J.S. Morrell D.B. Beach R. Feenstra and D.K. Christen J. Am. Ceram. Soc. 84 (2001) p.273.

    Article  CAS  Google Scholar 

  36. Y. Akin Z.K. Heiba W. Sigmund and Y.S. Hascicek Solid-State Electron. 47 (2003) p. 2171.

    Article  CAS  Google Scholar 

  37. T. Aytug M. Paranthaman H.Y. Zhai A.A. Gapud A. Goyal P.M. Martin K.J. Leonard J.R. Thompson, and D.K. Christen Appl. Phys. Lett. (2004) in press.

    Google Scholar 

  38. D.P. Norton A. Goyal J.D. Budai D.K. Christen D.M. Kroeger E.D. Specht Q. He B. Saffian, M. Paranthaman C. Klabunde D.F. Lee B.C. Sales and F.A. List Science 274 (1996) p. 755.

    Article  CAS  Google Scholar 

  39. J.S. Morrell Z.B. Xue E.D. Specht A. Goyal P.M. Martin D.F. Lee R. Feenstra D.T. Verebelyi D.K. Christen T.G. Chirayil M. Paranthaman C.E. Vallet and D.B. Beach J. Mater. Res. 15 (2000) p.621.

    Article  CAS  Google Scholar 

  40. M. Paranthaman D.F. Lee A. Goyal E.D. Specht P.M. Martin X. Cui J.E. Mathis R. Feenstra, D.K. Christen, and D.M. Kroeger Supercond. Sci. Technol. 12 (1999) p.319.

    Article  CAS  Google Scholar 

  41. M. Paranthaman T.G. Chirayil S. Sathyamurthy D.B. Beach A. Goyal F.A. List D.F. Lee X. Cui S.W. Lu B. Kang E.D. Specht P.M. Martin D.M. Kroeger R. Feenstra C. Cantoni and D.K. Christen IEEE Trans. Appl. Supercond. 11 (2001) p.3146.

    Article  Google Scholar 

  42. T.G. Chirayil M. Paranthaman D.B. Beach D.F. Lee A. Goyal R.K. Williams X. Cui D.M. Kroeger R. Feenstra D.T. Verebelyi and D.K. Christen, Physica C 336 (2000) p.63.

    Article  Google Scholar 

  43. S. Sathyamurthy M. Paranthaman H.Y. Zhai H.M. Christen P.M. Martin and A. Goyal J.Mater. Res. 17 (2002) p.2181.

    Article  CAS  Google Scholar 

  44. M.P. Paranthaman T. Aytug S. Sathyamurthy D.B. Beach A. Goyal D.F. Lee B.W. Kang L. Heatherly E.D. Specht K.J. Leonard, Physica C 378-381 (2002) p.1009.

    Article  Google Scholar 

  45. S.S. Shoup M. Paranthaman A. Goyal E.D. Specht D.F. Lee D.M. Kroeger and D.B. Beach J.Am. Ceram. Soc. 81 (1998) p.3019.

    Article  CAS  Google Scholar 

  46. M.W. Rupich W. Palm W. Zhang E. Siegal S. Annavarapu L. Fritzemeier M.D. Teplitsky C. Thieme and M. Paranthaman IEEE Trans. Appl. Supercond. 9 (1999) p.1527.

    Article  Google Scholar 

  47. M.P. Paranthaman D.F. Lee D.M. Kroeger and A. Goyal U.S. Patent Nos. 6,150,034 (November 21, 2000), 6,156,376 (December 5, 2000), and 6,159,610 (December 12, 2000).

    Google Scholar 

  48. M.P. Paranthaman T. Aytug S. Sathyamurthy K.J. Leonard and A. Goyal in Proc. of the 106th Amer. Ceram. Soc. Meeting (the American Ceramic Society, Westerville, OH, 2004) in press.

    Google Scholar 

  49. M. Paranthaman M.S. Bhuiyan S. Sathyamurthy H.Y. Zhai A. Goyal and K. Salama J. Mater. Res. (2004) submitted for publication.

    Google Scholar 

  50. T.G. Chirayil M. Paranthaman D.B. Beach J.S. Morrell E.Y. Sun A. Goyal R.K. Williams D.F. Lee P.M. Martin D.M. Kroeger R. Feenstra D.T. Verebelyi and D.K. Christen Mat. Res. Soc. Symp. Proc. 574, Warrendale, PA, 1999), p.51.

    Google Scholar 

  51. D.F. Lee M. Paranthaman J.E. Mathis A. Goyal D.M. Kroeger E.D. Specht R.K. Williams F.A. List P.M. Martin C. Park D.P. Norton and D.K. Christen Jpn. J. Appl. Phys., Part 2 38 (1999) p.L178.

    Article  CAS  Google Scholar 

  52. F.A. List A. Goyal M. Paranthaman D.P. Norton E.D. Specht D.F. Lee and D.M. Kroeger Physica C 302 (1998) p.87.

    Article  Google Scholar 

  53. J.M.S. Skakle Mater. Sci. Eng. R23 (1998) p.1.

    Article  Google Scholar 

  54. T.J. Jackson B.A. Glowacki and J.E. Evetts Physica C 296 (1998) p.215.

    Article  Google Scholar 

  55. D.G. Schlom D. Anselmetti J.G. Bednorz R.F. Broom A. Catana T. Frey C. Gerber H.J. Guentherodt H.P. Lang and J. Mannhart Z.Phys. B: Condens. Matter 86 (1992) p.163.

    Article  CAS  Google Scholar 

  56. G. Koster G. J.H.M. Rjinders D.H.A. Blank and H. Rogalla Appl. Phys. Lett. 74 (1999) p.3729.

    Article  Google Scholar 

  57. M.P. Paranthaman in Second Generation HTS Conductors, edited by A. Goyal (Plenum, New York, 2004) in press.

    Google Scholar 

  58. S. Sathyamurthy M. Paranthaman H.Y. Zhai S. Kang T. Aytug C. Cantoni K.J. Leonard E.A. Payzant H.M. Christen and A. Goyal J.Mater. Res. 19 (2004) p.2117.

    Article  CAS  Google Scholar 

  59. C. Cantoni D.K. Christen A. Goyal L. Heatherly F.A. List G.W. Ownby D.M. Zehner H.M. Christen and C.M. Rouleau IEEE Trans. Appl. Supercond. 13 (2003) p.2646.

    Article  CAS  Google Scholar 

  60. T. Watanabe K. Matsumoto T. Maeda T. Tanigawa and I. Hirabayashi Physica C 357-360 (2001) p.914.

    Article  CAS  Google Scholar 

  61. M.W. Rupich U. Schoop D.T. Verebelyi C. Thieme W. Zhang X. Li T. Kodenkandath N. Nguyen E. Siegal D. Buczek J. Lynch M. Jowett E. Thompson J.- S. Wang J. Scudiere A.P. Malozemoff Q. Li S. Annavarapu S. Cui L. Fritzemeier B. Aldrich C. Craven F. Niu R. Schwall A. Goyal and M. Paranthaman IEEE Trans. Appl. Supercond. 13 (2003) p.2458.

    Article  CAS  Google Scholar 

  62. D.T. Verebelyi E. Harley J. Scudiere A. Otto U. Schoop C. Thieme M. Rupich and A. Malozemoff Supercond. Sci. Technol. 16 (2003) p.1158.

    Article  CAS  Google Scholar 

  63. E.D. Specht A. Goyal and D.M. Kroeger Supercond. Sci. Tech 13 (2003) p.592.

    Article  Google Scholar 

  64. N. Rutter A. Goyal in High Temperature Superconductivity 1, edited by A.V. Narlikar (Springer, New York, 2004) p. 377.

    Google Scholar 

  65. D.T. Verebelyi U. Schoop C. Thieme X. Li W. Zhang T. Kodenkandath A.P. Malozemoff N. Nguyen E. Siegal D. Buczek J. Lynch J. Scudiere M. Rupich A. Goyal E.D. Specht P. Martin and M. Paranthaman Supercond. Sci Technol. 16 (2003) p. L19.

    Article  CAS  Google Scholar 

  66. M.J. Gouge J.W. Lue J.A. Demko R.C. Duckworth P.W. Fisher M. Daumling D.T. Lindsay M.L. Roden and J.C. Tolbert in Proc. of CEC-ICMC Meeting, Anchorage, Alaska, September 22–26, (2004) in press.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, A., Paranthaman, M.P. & Schoop, U. The RABiTS Approach: Using Rolling-Assisted Biaxially Textured Substrates for High-Performance YBCO Superconductors. MRS Bulletin 29, 552–561 (2004). https://doi.org/10.1557/mrs2004.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.161

Keywords

Navigation