Skip to main content
Log in

Nanotubes and the Pursuit of Applications

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A wide range of potential applications was suggested shortly after carbon nanotubes were discovered, including new super-strong materials, field-emission devices, hydrogen storage systems, novel electronic devices, and more. In this article, the actual advances in the technology of nanotubes over the last decade are examined. Particular attention is focused on current commercially viable applications and those with imminent commercial promise. The relatively large number of nanotube-related patents and nanotube-based startup companies stand in contrast to the relatively low output in commercial applications. The drive toward nanotube applications, in contrast to nanotube science, is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354 (1991) p. 56.

    Google Scholar 

  2. H.G. Tennent, “Carbon fibrils, method for producing same and compositions contauning same,” U.S. Patent 4,663,230, May 5, 1987.

    Google Scholar 

  3. A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth 32 (1976) p. 35.

    Google Scholar 

  4. D.W. Olson, “Diamond, Industrial,” U.S. Geological Survey Minerals Yearbook—2001, http://minerals.usgs.gov/minerals/pubs/commodity/diamond/diamon01.pdf (accessed March 2004).

  5. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318 (1985) p. 162.

    Google Scholar 

  6. W. Krätschmer, L.D. Lamb, K. Foristopoulos, and D.R. Huffman, Nature 347 (1990) p. 354.

    Google Scholar 

  7. D. Cox, S. Behal, M. Disko, S. Gorun, M. Greaney, C. Hsu, E. Kollin, J. Millar, J. Robbins, W. Robbins, R. Sherwood, and P. Tindall, J. Am. Chem. Soc. 113 (1991) p. 2940; see also SES Research Web site, http://www.sesres.com (accessed March 2004).

    Google Scholar 

  8. M. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  9. J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68 (1992) p. 631.

    Google Scholar 

  10. J.W. Mintmire and C.T. White, Carbon 33 (1995) p. 893.

    Google Scholar 

  11. L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 76 (1996) p. 479.

    Google Scholar 

  12. H. Dau, E.W. Wong, and C.M. Lieber, Science 272 (1996) p. 523.

    Google Scholar 

  13. A. Bachtold, M.S. Fuhrer, S. Plyasunov, M. Forero, E.H. Anderson, A. Zettl, and P.L. McEuen, Phys. Rev. Lett. 84 (2000) p. 6082.

    Google Scholar 

  14. S. Frank, P. Poncharal, Z.L. Wang, and W.A. de Heer, Science 280 (1998) p. 1744.

    Google Scholar 

  15. Hyperion Catalysis International Inc. home page, http://www.fibrils.com/ (accessed March 2004).

  16. T.W. Ebbesen and P.M. Ajayan, Nature 358 (1992) p. 220.

    Google Scholar 

  17. S. Iijima and T. Ichihashi, Nature 363 (1993) p.603.

    Google Scholar 

  18. D.S. Bethune, C.H. Kiang, M.S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363 (1993) p. 605.

    Google Scholar 

  19. D.S. Bethune, R.B. Beyers, and C.H. Kiang, “Carbon fibers and method for their production,” U.S. Patent 5,424,054, June 13, 1995.

    Google Scholar 

  20. W. Li, S. Xie, L. Qian, B. Chang, B. Zou, W. Zhou, R. Zhao, and G. Wang, Science 274 (1996) p.1701.

    Google Scholar 

  21. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton, Nature 388 (1997) p. 52.

    Google Scholar 

  22. Z. Pan, S. Xie, B. Chang, C. Wang, L. Lu, W. Liu, M. Zhou, and W. Li, Nature 394 (1998) p. 483.

    Google Scholar 

  23. A. Thess, R. Lee, P. Nikolaev, H. Dau, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tombnek, J.E. Fischer, and R.E. Smalley, Science 273 (1996) p.483.

    Google Scholar 

  24. R. Schlittler, J. Seo, J. Gimzewski, C. Durkan, M. Saufullah, and M. Welland, Science 292 (2001) p. 1136.

    Google Scholar 

  25. M. Welland, M.C. Durkan, M. Saufullah, J. Seo, R. Schlittler, and J. Gimzewski, Science 300 (2003).

  26. M. Kusunoki, T. Suzuki, C. Honjo, T. Hirayama, and N. Shibata, Chem. Phys. Lett. 366 (2002) p. 458.

    Google Scholar 

  27. R. Andrews, D. Jacques, A.M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, and R.C. Haddon, Appl. Phys. Lett. 75 (1999) p. 1329.

    Google Scholar 

  28. A.B. Dalton, S. Collins, E. Muñoz, J.M. Raza, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, and R.H. Baughman, Nature 423 (2003) p. 703.

    Google Scholar 

  29. W.A. de Heer, A. Chatelaun, and D. Ugarte, Science 270 (1995) p. 1179.

    Google Scholar 

  30. W.A. de Heer, “Electron source and applications of the same,” international patent WO9642101 (December 27, 1996).

    Google Scholar 

  31. A. Dillon, K.M. Jones, T. Bekkedahl, C. Kiang, D. Bethune, and M. Heben, Nature 386 (1997) p. 377.

    Google Scholar 

  32. M. Heben and A. Dillon, Science 287 (2000) p.593.

    Google Scholar 

  33. H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata, and Y. Murakami, Appl. Phys. Lett. 82 (2003) p. 1105.

    Google Scholar 

  34. S.J. Tans, R.M. Verschueren, and C. Dekker, Nature 393 (1998) p. 49.

    Google Scholar 

  35. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, The Science of Fullerenes and Nanotubes (Academic Press, London, 1996).

    Google Scholar 

  36. P. Avouris, R. Martel, V. Derycke, and J. Appenzeller, Physica B 323 (2002) p. 6.

    Google Scholar 

  37. P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287 (2000) p. 1801.

    Google Scholar 

  38. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dau, Science 287 (2000) p.622.

    Google Scholar 

  39. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H.J. Dau, Nature 424 (2003) p. 654.

    Google Scholar 

  40. P. Poncharal, C. Berger, Y. Yi, Z. Wang, and W.A. de Heer, J. Phys. Chem. B 106 (2002) p.12104.

    Google Scholar 

  41. W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, and H. Park, Nature 411 (2001) p. 665.

    Google Scholar 

  42. J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H.J. Dau, R.B. Laughlin, L. Liu, C.S. Jayanthi, and S.Y. Wu, Phys. Rev. Lett. 106801 (2001) p. 87.

    Google Scholar 

  43. Z. Yao, C.L. Kane, and C. Dekker, Phys. Rev. Lett. 84 (2000) p. 2941.

    Google Scholar 

  44. C. Schonenberger, A. Bachtold, C. Strunk, J. Salvetat, and L. Forro, Appl. Phys. A 69 (1999) p.283.

    Google Scholar 

  45. J. Bonard, J. Salvetat, T. Stockli, W. de Heer, L. Forro, and A. Chatelaun, Appl. Phys. Lett. 73 (1998) p. 918.

    Google Scholar 

  46. Nano-Proprietary Inc. news release, “Applied Nanotech, Inc. Announces Breakthrough with Carbon Nanotube Electron Sources, http://www.nano-proprietary.com/news/ press_releases/May_13_2003.pdf (accessed February 2004).

    Google Scholar 

  47. J. Bonard, T. Stockli, F. Mauer, W. de Heer, A. Chatelaun, J. Salvetat, and L. Forro, Phys. Rev. Lett. 81 (1998) p. 1441.

    Google Scholar 

  48. A. Obraztsov, A. Zakhidov, A. Volkov, and D. Lyashenko, Diamond Relat. Mater. 12 (2003) p.446.

    Google Scholar 

  49. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Science 287 (2000) p. 637.

    Google Scholar 

  50. P. Poncharal, Z.L. Wang, D. Ugarte, and W.A. de Heer, Science 283 (1999) p. 1513.

    Google Scholar 

  51. M.M. Treacy, T.W. Ebbesen, and J.M. Gibson, Nature 38 (1996) p. 678.

    Google Scholar 

  52. R. Baughman, A. Zakhidov, and W.A. de Heer, Science 297 (2002) p. 787.

    Google Scholar 

  53. Y. Choi, Y. Cho, J. Kang, Y. Kim, I. Kim, S. Park, H. Lee, S. Hwang, S. Lee, C. Lee, T. Oh, J. Choi, S. Kang, and J. Kim, Appl. Phys. Lett. 82 (2003) p. 3565.

    Google Scholar 

  54. J. Jung, Y. Jin, J. Choi, Y. Park, T. Ko, D. Chung, J. Kim, J. Jang, S. Cha, W. Yi, S. Cho, M. Yoon, C. Lee, J. You, N. Lee, J. Yoo, and J. Kim, Physica B 323 (2002) p. 71.

    Google Scholar 

  55. N. Lee, D. Chung, I. Han, J. Kang, Y. Choi, H. Kim, S. Park, Y. Jin, W. Yi, M. Yun, J. Jung, C. Lee, J. You, S. Jo, C.G. Lee, and J.M. Kim, Diamond Relat. Mater. 10 (2001) p. 265.

    Google Scholar 

  56. Motorola Labs press release, “Motorola Labs Announces Significant Progress in Carbon Nanotube Technology,” http://www.motorola.com/mediacenter/press/releases/Jul/ MotPR_2981_2436.rtf (accessed February 2004).

    Google Scholar 

  57. Noritake Itron Web site, “Ultra Bright Light Source,” http://www.itronise.co.jp/english/ nano/ (accessed February 2004).

    Google Scholar 

  58. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, Phys. Rev. Lett. 89 106801 (2002).

  59. T. Nakanishi, A. Bachtold, and C. Dekker, Phys. Rev. B 66 073307 (2002).

  60. P. Collins, M. Arnold, and P. Avouris, Science 292 (2001) p. 706.

    Google Scholar 

  61. Nantero Inc. press release, “Nantero Inc. Creates an Array of Ten Billion Nanotube Bits on Single Wafer,” http://www.nantero.com/ press.html (accessed February 2004).

    Google Scholar 

  62. C. Braunschweig, “Nano Nonsense,” Venture Capital J., http://www.ventureeconomics.com/ vcj/protected/1031551048675.html (accessed February 2004).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Heer, W.A. Nanotubes and the Pursuit of Applications. MRS Bulletin 29, 281–285 (2004). https://doi.org/10.1557/mrs2004.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.81

Keywords

Navigation