Skip to main content
Log in

Making Things by Self-Assembly

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Self-assembly—the spontaneous generation of order in systems of components—is ubiquitous in chemistry; in biology, it generates much of the functionality of the living cell. Self-assembly is relatively unused in microfabrication, although it offers opportunities to simplify processes, lower costs, develop new processes, use components too small to be manipulated robotically, integrate components made using incompatible technologies, and generate structures in three dimensions and on curved surfaces. The major limitations to the self-assembly of micrometer- to millimeter-sized components (mesoscale self-assembly) do not seem to be intrinsic, but rather operational: selfassembly can, in fact, be reliable and insensitive to small process variations, but fabricating the small, complex, functional components that future applications may require will necessitate the development of new methodologies. Proof-of-concept experiments in mesoscale self-assembly demonstrate that this technique poses fascinating scientific and technical challenges and offers the potential to provide access to hard-to-fabricate structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, Proc. Natl. Acad. Sci. USA 99 (8) (2002), special feature, “Supramolecular Chemistry and Self-assembly.”

  2. L. Brammer, Chem. Soc. Rev. 33 (2004) p. 476.

    Article  CAS  Google Scholar 

  3. S. Svenson, Curr. Opin. Coll. Interface Sci. 9 (2004) p. 201.

    Article  CAS  Google Scholar 

  4. J. Rebek Jr., Angew. Chem. Int. Ed. 44 (2005) p. 2068.

    Article  CAS  Google Scholar 

  5. J.-M. Lehn, Rep. Prog. Phys. 67 (2004) p. 249.

    Article  Google Scholar 

  6. A.P. Alivisatos, P.F. Barbara, A.W. Castelman, J. Chang, D.A. Dixon, M.L. Klein, G.L. McLendon, J.S. Miller, M.A. Ratner, P.J. Rossky, S.I. Stupp, and M.E. Thompson, Adv. Mater. 10 (1998) p. 1297.

    Article  Google Scholar 

  7. S.I. Stupp, V. LeBonheur, K. Walker, L.S. Li, K.E. Huggins, M. Keser, and A. Amstutz, Science 276 (1997) p. 384.

    Article  CAS  Google Scholar 

  8. J.D. Hartgerink, E. Beniash, and S.I. Stupp, Science 294 (2001) p. 1684.

    Article  CAS  Google Scholar 

  9. J.-M. Lehn and P. Ball, in The New Chemistry, edited by Hall N. (Cambridge University Press, Cambridge, UK, 2000) p. 300.

    Google Scholar 

  10. M.D. Hollingsworth, Science 295 (2002) p. 2410.

    CAS  Google Scholar 

  11. M.N. Jones and D. Chapman, Micelles, Monolayers and Biomembranes (Wiley-Liss, New York, 1995).

    Google Scholar 

  12. J.-W. Park and E.L. Thomas, Polym. Prepr. 43 (2002) p. 360.

    CAS  Google Scholar 

  13. E.L. Thomas, Science 286 (1999) p. 1307.

    Article  CAS  Google Scholar 

  14. G.M. Whitesides, G.S. Ferguson, D. Allara, D. Scherson, L. Speaker, and A. Ulman, Crit. Rev. Surf. Chem. 3 (1993) p. 49.

    CAS  Google Scholar 

  15. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, and G.M. Whitesides, Chem. Rev. 105 (2005) p. 1103.

    Article  CAS  Google Scholar 

  16. G.M. Whitesides and B. Grzybowski, Science 295 (2002) p. 2418.

    Article  CAS  Google Scholar 

  17. R.L. Carroll and C.B. Gorman, Angew. Chem. Int. Ed. 41 (2002) p. 4378.

    Article  Google Scholar 

  18. M. Boncheva, D.A. Bruzewicz, and G.M. Whitesides, Pure Appl. Chem. 75 (2003) p. 621.

    Article  CAS  Google Scholar 

  19. M.P. Valignat, O. Theodoly, J.C. Crocker, W.B. Russel, and P.M. Chaikin, Proc. Natl. Acad. Sci. USA 102 (2005) p. 4225.

    Article  CAS  Google Scholar 

  20. D.R. Turner, A. Pastor, M. Alajarin, and J.W. Steed, Struct. Bond. 108 (2004) p. 97.

    Article  CAS  Google Scholar 

  21. R.R.A. Syms, E.M. Yeatman, V.M. Bright, and G.M. Whitesides, J. Microelectromech. Syst. 12 (2003) p. 387.

    Article  Google Scholar 

  22. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. 12 (2000) p. 693.

    Article  CAS  Google Scholar 

  23. U. Srinivasan, D. Liepmann, and R.T. Howe, J. Microelectromech. Syst. 10 (2001) p. 17.

    Article  CAS  Google Scholar 

  24. Alien Technology Corp., “FSA Manufacturing,” www.alientechnology.com/technology/fsa_manufacturing.php (accessed September 2005).

    Google Scholar 

  25. P. Jiang, J.F. Bertone, and V.L. Colvin, Science 291 (2001) p. 453.

    Article  CAS  Google Scholar 

  26. R.R.A. Syms, J. Microelectromech. Syst. 8 (1999) p. 448.

    Article  Google Scholar 

  27. H.O. Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias, and G.M. Whitesides, Science 296 (2002) p. 323.

    Article  CAS  Google Scholar 

  28. M. Boncheva, S.A. Andreev, L. Mahadevan, A. Winkelman, D.R. Reichman, M.G. Prentiss, S. Whitesides, and G.M. Whitesides, Proc. Natl. Acad. Sci. USA 102 (2005) p. 3924.

    Article  CAS  Google Scholar 

  29. H. Wu, V.R. Thalladi, S. Whitesides, and G.M. Whitesides, J. Am. Chem. Soc. 124 (2002) p. 14495.

    Article  CAS  Google Scholar 

  30. Y. Yin, Y. Lu, B. Gates, and Y. Xia, J. Am Chem. Soc. 123 (2001) p. 8718.

    Article  CAS  Google Scholar 

  31. M. Boncheva and G.M. Whitesides, Adv. Mater. 17 (2004) p. 553.

    Article  CAS  Google Scholar 

  32. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, and D.A. Weitz, Science 298 (2002) p. 1006.

    Article  CAS  Google Scholar 

  33. W.T.S. Huck, J. Tien, and G.M. Whitesides, J. Am. Chem. Soc. 120 (1998) p. 8267.

    Article  CAS  Google Scholar 

  34. C. Mao, V.R. Thalladi, D.B. Wolfe, S. Whitesides, and G.M. Whitesides, J. Am Chem. Soc. 124 (2002) p. 14508.

    Article  CAS  Google Scholar 

  35. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson, Molecular Biology of the Cell, 3rd ed. (Garland, New York, 1994).

    Google Scholar 

  36. M. Boncheva and G.M. Whitesides, in Encyclopedia of Nanoscience and Nanotechnology, edited by Schwarz J.A., Contescu C., and Putyera K. (Marcel Dekker, New York, 2004) p. 287.

  37. Y. Xia, B. Gates, Y. Yin, and Y. Sun, in Handbook of Surface and Colloid Chemistry, 2nd ed., edited by Birdi K.S. (CRC Press, Boca Raton, FL, 2003) p. 555.

    Google Scholar 

  38. M. Boncheva, R. Ferrigno, D.A. Bruzewicz, and G.M. Whitesides, Angew. Chem. Int. Ed. 42 (2003) p. 3368.

    Article  CAS  Google Scholar 

  39. M. Boncheva, D.H. Gracias, H.O. Jacobs, and G.M. Whitesides, Proc. Natl. Acad. Sci. USA 99 (2002) p. 4937.

    Article  CAS  Google Scholar 

  40. A. Lendlein and R. Langer, Science 296 (2002) p. 1673.

    Article  Google Scholar 

  41. C. Branden and J. Tooze, Introduction to Protein Structure (Garland Publishing, New York, 1999).

    Google Scholar 

  42. Y.L. Slovokhotov, I.S. Neretin, and J.A.K. Howard, New J. Chem. 28 (2004) p. 967.

    Article  CAS  Google Scholar 

  43. M.R. Bockstaller, R.A. Mickiewicz, and E.L. Thomas, Adv. Mater. 17 (2005) p. 1331.

    Article  CAS  Google Scholar 

  44. D.B. Wolfe, A. Snead, C. Mao, N.B. Bowden, and G.M. Whitesides, Langmuir 19 (2003) p. 2206.

    Article  CAS  Google Scholar 

  45. M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, FL, 1997).

    Google Scholar 

  46. R.S. Fearing, “Survey of sticking effects for micro parts handling,” presented at IEEE/RSJ Int. Workshop on Intelligent Robots and Systems (IROS), Pittsburgh, PA, 1995.

    Google Scholar 

  47. K.F. Boehringer, R.S. Fearing, and K.Y. Goldberg, in The Handbook of Industrial Robotics, 2nd ed., edited by Nof S. (John Wiley and Sons, New York, 1999) p. 1045.

  48. W.M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (Plenum Press, New York, 1988).

    Book  Google Scholar 

  49. Y. Xia, B. Gates, and Z.-Y. Li, Adv. Mater. 13 (2001) p. 409.

    Article  CAS  Google Scholar 

  50. P.V. Braun and P. Wiltzius, Curr. Opin. Coll. Interface Sci. 7 (2002) p. 116.

    Article  CAS  Google Scholar 

  51. D.J. Norris, E.G. Arlinghaus, L.L. Meng, R. Heiny, and L.E. Scriven, Adv. Mater. 16 (2004) p. 1393.

    Article  CAS  Google Scholar 

  52. W. Kuo and T. Kim, Proc. IEEE 87 (1999) p. 1329.

    Article  Google Scholar 

  53. H.-J.J. Yeh and J.S. Smith, IEEE Photon Technol. Lett. 6 (1994) p. 706.

    Article  Google Scholar 

  54. G. Yang and B.J. Nelson, in MEMS Packaging, edited by Hsu T.-R. (IEE Press, London, 2004) p. 109.

  55. B. Hatton, K. Landskron, W. Whitnall, D. Perovic, and G.A. Ozin, Acc. Chem. Res 38 (2005) p. 305.

    Article  CAS  Google Scholar 

  56. C.B. Murray, C.R. Kagan, and M.G. Bawendi, Ann. Rev. Mater. Sci. 30 (2000) p. 545.

    Article  CAS  Google Scholar 

  57. W.J. Butera, “Programming a Paintable Computer,” PhD thesis, Massachusetts Institute of Technology (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boncheva, M., Whitesides, G.M. Making Things by Self-Assembly. MRS Bulletin 30, 736–742 (2005). https://doi.org/10.1557/mrs2005.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.208

Keywords

Navigation