Skip to main content
Log in

Microengineering the Environment of Mammalian Cells in Culture

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Assays based on observations of the biological responses of individual cells to their environment have the potential to make enormous contributions to cell biology and biomedicine.To carry out well-defined experiments using cells, both the environments in which the cells live and the cells themselves must be well defined. Cell-based assays are now plagued by inconsistencies and irreproducibility, and a primary challenge in the development of informative assays is to understand the fundamental bases for these inconsistencies and to limit them. It now seems that multiple factors may contribute to the variability in the response of individual cells to stimuli; some of these factors may be extrinsic to the cells, some intrinsic. New techniques based on microengineering—especially using soft lithography to pattern surfaces at the molecular level and to fabricate microfluidic systems—have provided new capabilities to address the extrinsic factors. This review discusses recent advances in materials science that provide well-defined physical environments that can be used to study cells, both individually and in groups, in attached culture. It also reviews the challenges that must be addressed in order to make cell-based assays reproducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Arthur, M.D. Guyton, and J.E. Hall, Textbook of Medical Physiology, 10th Ed. (W.B. Saunders, Philadelphia, 2000).

    Google Scholar 

  2. C.S. Chen, J. Tan, and J. Tien, Ann. Rev. Biomed. Eng. 6 (2004) p. 275.

    Article  CAS  Google Scholar 

  3. B. Alberts, A. Johnson, J. Lewis, M. Raff, R. Keith, and P. Walter, Molecular Biology of the Cell, 4th Ed. (Garland Science, New York, 2002).

    Google Scholar 

  4. S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D.E. Ingber, and G.M. Whitesides, Nature 411 (2001) p. 1016.

    Article  CAS  Google Scholar 

  5. S.K.W. Dertinger, X. Jiang, Z. Li, V.N. Murthy, and G.M. Whitesides, Proc. Natl. Acad. Sci. USA 99 (2002) p. 12542.

    Article  CAS  Google Scholar 

  6. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D.E. Ingber, Annu. Rev. Biomed. Eng. 3 (2001) p. 335.

    Article  CAS  Google Scholar 

  7. B.D. Gates, Q.B. Xu, J.C. Love, D.B. Wolfe, and G.M. Whitesides, Annu. Rev. Mater. Res. 34 (2004) p. 339.

    Article  CAS  Google Scholar 

  8. X. Jiang and G.M. Whitesides, Eng. Life Sci. 3 (2003) p. 475.

    Article  CAS  Google Scholar 

  9. P. Kenis, R. Ismagilov, S. Takayama, and G. Whitesides, Acc. Chem. Res. 33 (2000) p. 841.

    Article  CAS  Google Scholar 

  10. Y. Xia and G.M. Whitesides, Angew. Chem. Int. Ed. Engl. 37 (1998) p. 550.

    Article  CAS  Google Scholar 

  11. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Science 276 (1997) p. 1425.

    Article  CAS  Google Scholar 

  12. S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A. Kenis, R.F. Ismagilov, and G.M. Whitesides, Proc. Natl. Acad. Sci. USA 96 (1999) p. 5545.

    Article  CAS  Google Scholar 

  13. D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane, C.J. Wargo, I.S. Choi, D.E. Ingber, and G.M. Whitesides, Proc. Natl. Acad. Sci. USA 97 (2000) p. 2408.

    Article  CAS  Google Scholar 

  14. S.K.W. Dertinger, D.T. Chiu, N.L. Jeon, and G.M. Whitesides, Anal. Chem. 73 (2001) p. 1240.

    Article  CAS  Google Scholar 

  15. S. Huang, C.S. Chen, and D.E. Ingber, Mol. Biol. Cell. 9 (1998) p. 3179.

    Article  CAS  Google Scholar 

  16. R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, and C.S. Chen, Dev. Cell 6 (2004) p. 483.

    Article  CAS  Google Scholar 

  17. M. Tessier-Lavigne and C.S. Goodman, Science 274 (1996) p. 1123.

    Article  CAS  Google Scholar 

  18. B.K. Brandley and R.L. Schnaar, Dev. Biol. 135 (1989) p. 74.

    Article  CAS  Google Scholar 

  19. D. Bray, Cell Movements: from Molecules to Motility, 2nd Ed. (Garland Publishing, New York, 2001).

    Google Scholar 

  20. P.J.M. Van Haastert and P.N. Devreotes, Nat. Rev. Mol. Cell Biol. 5 (2004) p. 626.

    Article  Google Scholar 

  21. K. Hong, M. Nishiyama, J. Henley, M. Tessier-Lavigne, and M.M. Poo, Nature 403 (2000) p. 93.

    Article  CAS  Google Scholar 

  22. S.L. Zackson and M.S. Steinberg, Dev. Biol. 124 (1987) p. 418.

    Article  CAS  Google Scholar 

  23. J.B. McCarthy and L.T. Furcht, J. Cell Biol. 98 (1984) p. 1474.

    Article  CAS  Google Scholar 

  24. V. Rigot, M. Lehmann, F. Andre, N. Daemi, J. Marvaldi, and J. Luis, J. Cell Sci. 111 (1998) p. 3119.

    CAS  Google Scholar 

  25. N.L. Jeon, H. Baskaran, S. Dertinger, G.M. Whitesides, L. Van De Water, and M. Toner, Nat. Biotechnol. 20 (2002) p. 826.

    Article  CAS  Google Scholar 

  26. E. Ostuni, R. Kane, C.S. Chen, D.E. Ingber, and G.M. Whitesides, Langmuir 16 (2000) p. 7811.

    Article  CAS  Google Scholar 

  27. A. Folch, B.H. Jo, O. Hurtado, D.J. Beebe, and M. Toner, J. Biomed. Mater. Res. 52 (2000) p. 346.

    Article  CAS  Google Scholar 

  28. D.E. Ingber, Proc. Natl. Acad. Sci. USA 87 (1990) p. 3579.

    Article  CAS  Google Scholar 

  29. K.K. Parker, A.L. Brock, C. Brangwynne, R.J. Mannix, N. Wang, E. Ostuni, N.A. Geisse, J.C. Adams, G.M. Whitesides, and D.E. Ingber, FASEB J. 16 (2002) p. 1195.

    Article  CAS  Google Scholar 

  30. A. Brock, E. Chang, C.-C. Ho, P. LeDuc, X. Jiang, G.M. Whitesides, and D.E. Ingber, Langmuir 19 (2003) p. 1611.

    Article  CAS  Google Scholar 

  31. J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, and C.S. Chen, Proc. Natl. Acad. Sci. USA 100 (2003) p. 1484.

    Article  CAS  Google Scholar 

  32. C.M. Lo, H.B. Wang, M. Dembo, and Y.L. Wang, Biophys. J. 79 (2000) p. 144.

    Article  CAS  Google Scholar 

  33. M.N. Yousaf, B.T. Houseman, and M. Mrksich, Angew. Chem. Int. Ed. 40 (2001) p. 1093.

    Article  CAS  Google Scholar 

  34. W.-S. Yeo, M.N. Yousaf, and M. Mrksich, J. Am. Chem. Soc. 125 (2003) p. 14994.

    Article  CAS  Google Scholar 

  35. X. Jiang, R. Ferrigno, M. Mrksich, and G.M. Whitesides, J. Am. Chem. Soc. 125 (2003) p. 2366.

    Article  CAS  Google Scholar 

  36. C.M. Nelson and C.S. Chen, FEBS Lett. 514 (2002) p. 238.

    Article  CAS  Google Scholar 

  37. R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopoulos, D.I.C. Wang, G.M. Whitesides, and D.E. Ingber, Science 264 (1994) p. 696.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.S., Jiang, X. & Whitesides, G.M. Microengineering the Environment of Mammalian Cells in Culture. MRS Bulletin 30, 194–201 (2005). https://doi.org/10.1557/mrs2005.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.52

Keywords

Navigation