Skip to main content
Log in

Properties of Nanostructured One-Dimensional and Composite Thermoelectric Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Over a decade ago, Dresselhaus predicted that low-dimensional systems would one day serve as a route to enhanced thermoelectric performance.In this article, recent results in the thermoelectric properties of nanowires and nanotubes are discussed. Various synthesis techniques will be presented, including chemical vapor deposition for the growth of thermoelectric nanostructures in templated alumina.Electrical transport measurements of carbon nanostructures, such as resistivity and thermopower, have revealed some very interesting thermoelectric properties.Challenges still remain concerning the measurement of individual nanostructures such as nanowires. Much work has been performed on the thermoelectric properties of carbon nanotubes, and these results will be highlighted.In addition, routes for enhanced thermoelectric materials have focused on incorporating nanostructures within the bulk materials.The role of these “hybrid composite structures” based on nanomaterials incorporated into the bulk matrix and the potential for enhanced performance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354 (1991) p. 56.

    Google Scholar 

  2. M. Dresselhaus, G. Dresselhaus, and Ph. Avouris, eds., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer-Verlag, Berlin, 2001).

  3. M. Meyyappan, ed., Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, FL, 2005).

  4. P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287 (2000) p. 1801.

    Google Scholar 

  5. K. Bradley, S.-H. Jhi, P.G. Collins, J. Hone, M.L. Cohen, S.G. Louie, and A. Zettl, Phys. Rev. Lett. 85 (20) (2000) p. 4361.

    Google Scholar 

  6. G.U. Sumanasekera, C.K.W. Adu, S. Fang, and P.C. Eklund, Phys. Rev. Lett. 85 (5) (2000) p. 1096.

    Google Scholar 

  7. T. Savage, B. Sadanadan, J. Gaillard, T.M. Tritt, Y.-P. Sun, Y. Wu, S. Nayak, R. Car, N. Marzari, P.M. Ajayan, and A.M. Rao, J. Cond. Matter. 15 (2003) p. 1915; M. Grujicic, S. Nayak, T. Tritt, and A.M. Rao, Appl. Surf. Sci. 214 (2003) p. 289.

    Google Scholar 

  8. K. McGuire, N. Gothard, P.L. Gai, M.S. Dresselhaus, G. Sumanasekera, and A.M. Rao, Carbon 43 (2005) p. 219.

    Google Scholar 

  9. H.E. Romero, K. Bolton, A. Rosen, and P.C. Eklund, Science 307 (2005) p. 89.

    Google Scholar 

  10. F.J. Blatt, P.A. Schroeder, C.L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum Press, New York, 1976).

    Google Scholar 

  11. P. Avouris, Acc. Chem. Res. 35 (2002) p. 1026.

    Google Scholar 

  12. V.W. Scarola and G.D. Mahan, Phys. Rev. B 66 205405 (2002).

    Google Scholar 

  13. J. Vavro, M.C. Llaguno, J.E. Fischer, S. Ramesh, R.K. Saini, L.M. Ericson, V.A. Davis, R.H. Hauge, M. Pasquali, and R.E. Smalley, Phys. Rev. Lett. 90 065503 (2003).

    Google Scholar 

  14. H.E. Romero, G.U. Sumanasekera, S. Kishore, and P.C. Eklund, J. Phys. Condens. Matter 16 (2004) p. 1939.

    Google Scholar 

  15. G.U. Sumanasekera, B.K. Pradhan, H.E. Romero, K.W. Adu, and P.C. Eklund, Phys. Rev. Lett. 89 166801 (2002).

    Google Scholar 

  16. B. Sadanadan, T. Savage, J. Gaillard, S. Bhattacharya, T. Tritt, A. Cassell, Z. Pan, Z.L. Wang, and A.M. Rao, J. Nanosci. Nanotech. (Special Issue) 3 (2003) p. 99.

    Google Scholar 

  17. J.P. Small, L. Shi, and P. Kim, Phys. Rev. Lett. 91 256801 (2003).

    Google Scholar 

  18. J. Vavro, M.C. Llaguno, B.C. Satishkumar, D.E. Luzzi, and J.E. Fischer, Appl. Phys. Lett. 80 (8) (2002) p. 1450.

    Google Scholar 

  19. L. Grigorian, G.U. Sumanasekera, A.L. Loper, S.L. Fang, J.L. Allen, and P.C. Eklund, Phys. Rev. B 60 (1999) p. R11309.

    Google Scholar 

  20. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, and D. Mihailovic, Science 292 (2001) p. 479 and references therein.

    Google Scholar 

  21. J. Chen, S.-L. Li, F. Gao, and Z.-L. Tao, Chem. Mater. 15 (2003) p. 1012.

    Google Scholar 

  22. J. Chen, S.-L. Li, Z.-L. Tao, and F. Gao, Chem. Commun. (2003) p. 980.

  23. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47 (1993) p. 12727.

    Google Scholar 

  24. H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64 241104-R (2001) and references therein.

    Google Scholar 

  25. P. Magri, C. Boulanger, J.M. Lecuire, J. Mater. Chem. 6 (1996) p. 773.

    Google Scholar 

  26. J.P. Fleurial, A. Borschevsky, M.A. Ryan, W. Phillips, E. Kolawa, T. Kacisch, and R. Ewell, in Proc. 16th ICT (IEEE, Piscataway, NJ, 1997) p. 641.

    Google Scholar 

  27. M. Martin-Gonzalez, G.J. Snyder, A.L. Prieto, R. Gronsky, T. Sands, and A.M. Stacy, Nano Lett. 3 (2003) p. 973 and references therein.

    Google Scholar 

  28. M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, and A.M. Stacy, Adv. Mater. 14 (2002) p. 665.

    Google Scholar 

  29. X.H. Ji, X.B. Zhao, Y.H. Zhang, T. Sun, H.L. Ni, and B.H. Lu, in Proc. 23rd ICT (IEEE, Piscataway, NJ, 2004).

    Google Scholar 

  30. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86 062111 (2005).

    Google Scholar 

  31. X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, and H.L. Ni, J. Alloys Compd. 387 (2005) p. 282.

    Google Scholar 

  32. X.H. Ji, “Syntheses and Properties of Nanostructured Bi2Te 3-Based Thermoelectric Materials,” PhD dissertation, Zhejiang University, Hangzhou, China (2005).

  33. X.B. Zhao, X.H. Ji, Y.H. Zhang, and B.H. Lu, J. Alloys Compd. 368 (1–2) (2004) p. 349.

    Google Scholar 

  34. X.H. Ji, X. Zhao, Y. Zhang, B.H. Lu, and H. Ni, in Thermoelectric Materials 2003—Research and Applications, edited by G.S. Nolas, J. Yang, T.P. Hogan, and D.C. Johnson (Mater. Res. Soc. Symp. Proc. 793, Warrendale, PA, 2004) p. 21.

  35. X.B Zhao, T. Sun, T.J. Zhu, and J.P. Tu, J. Mater. Chem. 15 (2005) p. 1621.

    Google Scholar 

  36. Y.Y. Zheng, T.J. Zhu, X.B. Zhao, J.P. Tu, and G.S. Cao, Mater. Lett. 59 (2005) p. 2886.

    Google Scholar 

  37. X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, and H.L. Ni, J. Alloys Compd. 387 (2005) p. 282; X.H. Ji, X.B. Zhao, Y.H. Zhang, B.H. Lu, and H.L. Ni, Mater. Lett. 59 (2005) p. 682; X.B. Zhao, Y.H. Zhang, and X.H. Ji, Inorg. Chem. Commun. 7 (2004) p. 386.

    Google Scholar 

  38. X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, and J.P. Tu, Appl. Phys. A 80 (2005) p. 1567.

    Google Scholar 

  39. A. Sashchiuk, L. Amirav, M. Bashouti, M. Krueger, U. Sivan, and E. Lifshitz, Nano Lett. 4 (2004) p. 159.

    Google Scholar 

  40. J. Xie, X.-B. Zhao, J.-L. Mi, G.-S. Cao, and J.-P. Tu, J. Zhejiang Univ., Sci. (JZUS), Lett. 5 (2005) p. 1504.

    Google Scholar 

  41. J. Xie, X.B. Zhao, G.S. Cao, M.J. Zhao, and S.F. Su, J. Power Sources 140 (2005) p. 350.

    Google Scholar 

  42. B. Zhang, J. He, and T.M. Tritt, Appl. Phys. Lett. 88 043119 (2006).

    Google Scholar 

  43. T.M. Tritt, Science 283 (1999) p. 804.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, A.M., Ji, X. & Tritt, T.M. Properties of Nanostructured One-Dimensional and Composite Thermoelectric Materials. MRS Bulletin 31, 218–223 (2006). https://doi.org/10.1557/mrs2006.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.48

Keywords

Navigation