Skip to main content
Log in

Next-Generation Fibrous Media for Water Treatment

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Fibrous media in the form of nonwoven filters have been used extensively in water treatment as pre-filters or to support the medium that does the separation. Nonwoven media are composed of randomly oriented micron-size fibers and provide a one step separation as a substitute for conventional processes comprising chemical addition, flocculation, sedimentation, and sand filtration. At present the use of nonwoven filter media is limited to pre-filters and is not used further downstream as high performance filters. However it is expected that by reducing the fiber size in the nanometer range, higher filtration efficiency can be achieved. With the advent of nanotechnology, the ease of producing high quality nano scaled fibers is now a reality. Recent advancements in nanofibrous media through surface modifications have shown that nonwoven media can be used beyond the prefilter stage. Furthermore the pore size of the filter media can be controlled through modification of fiber size and thickness of membranes. These nanofibrous membranes possess high surface area and large porosity leading to high flux, low pressure membranes. This article highlights important opportunities and challenges associated with developing nanofibrous media for water treatment. In addition, we have attempted to capture a snapshot of this rapidly developing new area of fibrous media for water treatment for the benefit of the wider membrane community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Steffens, Filtration 7 (1), 26 (2007).

    Google Scholar 

  2. M. Cheryan, Ultrafiltration and Microfiltration Handbook (Lancaster, Pa, Technomic Publishing Co., 1998).

    Google Scholar 

  3. S. Kaur, Surface Modification of Electrospun Poly(vinylidene Fluoride) Nanofibrous Microfiltration Membrane MEng Thesis (2007).

  4. C. Dickenson, Filters and Filtration Handbook, Third Edition (Elsevier Advanced Technology, Oxford, UK, 1992).

    Google Scholar 

  5. I.M. Hutten, Handbook of Nonwoven Filter Media (Elsevier, 2007).

  6. W. Nazaroff, L. Alvarez-Cohen, Environmental Engineering Science (Wiley, NY, 2001).

    Google Scholar 

  7. W. Won, P. Shields, Membrane Practices for Water Treatment S.J. Duranceau, Ed. (American Water Works Association, Denver, CO, 2001).

    Google Scholar 

  8. M.C. Porter, Handbook of Industrial Membrane Technology (Noyes Publishing, NJ, 1990).

    Google Scholar 

  9. T. Grafe, K. Graham, Paper presented at INTC 2002, International nonwovens Technical Conference (Joint INDA-TAPPI) (Atlanta, Georgia, September 24–26, 2002).

  10. H. Vogt, Filtr. Sep. 42 (7), 36 (2005).

    Google Scholar 

  11. G. Ward, Filtr. Sep. 42 (7), 22 (2005).

    Google Scholar 

  12. R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, T. Matsuura, J. Mem. Sci. 281, 581 (2006).

    Google Scholar 

  13. K. Kosmider, J. Scott, Filtr. Sep. 39 (6), 20 (2002).

    Google Scholar 

  14. R Gopal, C.Y. Feng, C. Chan, S. Ramakrishna, T. Matsuura, Proceedings of the 2007, AWWA Membrane Technology Conference (March 18–21, 2007).

  15. R. Gopal, S. Kaur, C.Y. Feng, Z. Ma, C. Chan, S. Ramakrishna, S. Tabe,T. Matsuura, J. Mem. Sci. 289, 210 (2007).

    Google Scholar 

  16. R. Komlenic, Filtr. Sep. 44 (5), 26 (2007).

    Google Scholar 

  17. S. Kaur, Z. Ma, R. Gopal, S. Ramakrishna, T. Matsuura, Langmuir In press.

  18. K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao B. Chu, Polymer 47, 2434 (2006).

    Google Scholar 

  19. X. Wang, D. Fang, K. Yoon, B.S. Hsiao, B. Chu, J. Mem. Sci. 278, 261 (2006)

    Google Scholar 

  20. X. Wang, X. Chen, K. Yoon, D. Fang, B.S. Hsiao, B. Chu, Envron. Sci. Technol. 39 (19), 7684 (2005).

    Google Scholar 

  21. F. Tepper, T. Rivkin, G. Lukasic, Filtr. Sep. 39 (6), 16 (2002).

    Google Scholar 

  22. E.R. Kenawy, T.R. Abdel-Fattah, Macromol. Biosci. 2 (6), 261 (2002).

    Google Scholar 

  23. S. Kaur, M. Kotaki, Z. Ma, R. Gopal, S. Ramakrishna, S.C. Ng, Int. J. Nanosci. 5, 1 (2006).

    Google Scholar 

  24. C. Shin, G.G. Chase, AIChE J. 50 (2), 343 (2004).

    Google Scholar 

  25. C.Shin, G.G. Chase, D.H. Reneker, AIChE J. 51 (12), 3109 (2005).

    Google Scholar 

  26. K. Sutherland, Filtr. Sep. 42 (7), 34 (2005).

    Google Scholar 

  27. http://www.toray.com/news/fiber/nr021031.html

  28. S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma, An introduction to Electrospinning and Nanofibers (World Scientific, Singapore, Hackensack, NJ, 2005).

    Google Scholar 

  29. J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C.B Tan, Polymer 42 (1), 261 (2001).

    Google Scholar 

  30. X.H. Zhong, K.S. Kim, D.F. Fang, S.F. Ran, B.S. Hsiao, B. Chu, Polymer 43, 4403 (2002).

    Google Scholar 

  31. H. Fong, I. Chun, D.H. Reneker, Polymer 40, 4585 (1999).

    Google Scholar 

  32. R.V.N. Krishnappa, K. Desai, C.M. Sung, J. Mater. Sci. 38, 2357 (2003).

    Google Scholar 

  33. M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer 43, 3303 (2002).

    Google Scholar 

  34. S.F. Fennessey, R.J. Farris, Polymer 45, 4217 (2004).

    Google Scholar 

  35. M.S. Khil, S.R. Bhattarai, H.Y. Kim, S.Z. Kim, K.H. Lee, J. Biomed. Mater. Res. Part B Appl. Biomater. 72, 117 (2005).

    Google Scholar 

  36. D.H. Reneker, I. Chun, Nanotechnology 7, 216 (1996).

    Google Scholar 

  37. P.D. Dalton, D. Klee, M. Moller, Polym. Commun. 46, 611 (2005).

    Google Scholar 

  38. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Geiner, J.H. Wendorff, Adv. Mater. 13, 70 (2001).

    Google Scholar 

  39. S. Megelski, J.S Stephens, D.B. Chase, J.F. Rabolt, Macromolecules 35, 8456 (2002).

    Google Scholar 

  40. C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, J.F. Rabolt, Macromolecules 37, 573 (2004).

    Google Scholar 

  41. M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J.H. Wendorff, Adv. Mater. 13, 70 (2001).

    Google Scholar 

  42. H.Q. Hou, Z. Jun, A. Reuning, A. Schaper, J.H. Wendorff, A. Greiner, Macromolecules 35, 2429 (2002).

    Google Scholar 

  43. D. Li, Y. Xia, Nano. Lett. 4, 933 (2004).

    Google Scholar 

  44. D.O. Li, J.T.G. McCann, Y. Xia, Nano. Lett. 5 (5), 913 (2005).

    Google Scholar 

  45. L. Huang, R.A. McMillan, R.P. Apkarian, B. Poudehim, V.P. Conticello, E.L. Chaikof, Macromolecules 33 (8), 2989 (2000).

    Google Scholar 

  46. S. Koombhongse, W. Liu, D.H. Reneker, J. Polym. Sci., Polym. Phys. 39, 2598 (2001).

    Google Scholar 

  47. R. Kessick, G. Tepper, Appl. Phys. Lett. 84 (23), 4807 (2004).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, S., Gopal, R., Ng, W.J. et al. Next-Generation Fibrous Media for Water Treatment. MRS Bulletin 33, 21–26 (2008). https://doi.org/10.1557/mrs2008.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.10

Navigation