Skip to main content
Log in

The Evolution of Nanothermoelectricity

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A personal review is presented. We review the renaissance in thermoelectric materials research that started in 1993 with the introduction of the nanostructure concept as a potential method to both increase the power factor and decrease the thermal conductivity and to even do both at the same time. The earliest work was limited to model systems for the demonstration of proof of principle. More recently the focus has evolved into demonstration of embedding the phenomena into bulk samples based on composites and superlattices. We here review this evolution of the nanothermoelectricity field. The resulting current activity is attracting many new researchers, industrial interest and the emergence of new ideas. We now look to the further development of these new ideas, and to the introduction of more new ideas and new approaches, as the field is now approaching the stage of commercial relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.Yoffe, Adv. in Phys. 42, 173 (1993).

    Article  CAS  Google Scholar 

  2. H.J. Goldsmid, Thermoelectric Refrigeration, Plenum, New York, 1964.

    Book  Google Scholar 

  3. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structures, Materials Science and Engineering B 19, 185–191 (1993).

    Article  Google Scholar 

  4. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  5. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631(1993).

    Article  CAS  Google Scholar 

  6. L.D. Hicks, T.C. Harman, M.S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).

    Article  CAS  Google Scholar 

  7. L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Phys. Rev. B 53, R10493 (1996).

    Article  CAS  Google Scholar 

  8. Z.B. Zhang, Fabrication, characterization and transport properties of bismuth nanowire systems, {Ph.D.} thesis, Massachusetts Institute of Technology, Department of Physics (February 1999).

  9. X. Sun, Z. Zhang, M.S. Dresselhaus, Appl. Phys. Lett. 74, 4005 (1999).

    Article  CAS  Google Scholar 

  10. X. Sun, Z. Zhang, G. Dresselhaus, M.S. Dresselhaus, J.Y. Ying, G.Chen, Theoretical modeling of thermoelectricity in bismuth nanowires, in: T.M. Tritt, H.B. Lyon, Jr., G. Mahan, M.G. Kanatzidis (Eds.), Thermoelectric Materials. The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications: MRS Symposium Proceedings, Boston, volume, Vol. 545, Materials Research Society Press, Pittsburgh, PA, 1999, pp. 87–92.

    Google Scholar 

  11. T. Koga, T.C. Harman, S.B. Cronin, M.S. Dresselhaus, Phys. Rev. B 60, 14286 (1999).

    Article  CAS  Google Scholar 

  12. T. Koga, X. Sun, S.B. Cronin, M.S. Dresselhaus, Appl. Phys. Lett. 73, 2950 (1998).

    Article  CAS  Google Scholar 

  13. M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, Phys. Solid State 41, 679 (1999).

    Article  CAS  Google Scholar 

  14. M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, J.Y. Ying, G. Chen, Microscale Thermophysical Engineering 3, 89 (1999).

    Article  CAS  Google Scholar 

  15. G. S. Snyder and E. S. Toberer, NATURE Materials 7, 105 (2008).

    Article  CAS  Google Scholar 

  16. Y.-M. Lin, X.Sun, M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).

    Article  CAS  Google Scholar 

  17. J.P. Heremans, C.M. Thrush, Y.M. Lin, S. Cronin, Z. Zhang, M.S. Dresselhaus, J.F. Mansfield, Phys. Rev. B 61, 2921 (2000).

    Article  CAS  Google Scholar 

  18. Y.M. Lin, O. Rabin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, Appl. Phys. Lett. 81, 2403 (2002).

    Article  CAS  Google Scholar 

  19. T. Borca-Tasciuc, W. Liu, J. Liu, T. Zeng, D.W. Song, C.D. Moore, G. Chen, K.L. Wang, M.S. Goorsky, T. Radetic, R. Gronsky, T. Koga, M.S. Dresselhaus, Superlattices and Microstructures 28, 199 (2000).

    Article  CAS  Google Scholar 

  20. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Recent developments in thermoelectric materials, in: M.J. Bevis (Ed.), International Materials Review, Vol. 48, Vol.~48, Institute of Materials Journals, 1 Carlton House Terrace, London SW1Y 5DB, 2003, pp. 45--66.

  21. E.I. Rogacheva, I.M. Krivulkin, O.N. Nashchekina, A.Y. Sipatov, V.A. Volobuev, M.S. Dresselhaus, Appl. Phys. Lett. 78, 3238 (2001).

    Article  CAS  Google Scholar 

  22. E.I. Rogacheva, I.M. Krivulkin, O.N. Nashchekina, A.Y. Sipatov, V.V. Volubnev, M.S. Dresselhaus, Appl. Phys. Lett. 78, 1661 (2001).

    Article  CAS  Google Scholar 

  23. E.I. Rogacheva, T.V. Tavrina, O.N. Nashchekina, S.N. Grigorov, K.A. Nasedkin, M.S. Dresselhaus, Appl. Phys. Lett. 80, 2690 (2002).

    Article  CAS  Google Scholar 

  24. R. Yang, G. Chen, M.S. Dresselhaus, Phys. Rev. B 72, 125418–1 (2005).

    Article  CAS  Google Scholar 

  25. R. Yang, G. Chen, M.S. Dresselhaus, Nano Letters 5, 1111 (2005).

    Article  CAS  Google Scholar 

  26. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P.Gogna, New directions for nanoscale thermoelectric materials research, in: J. Yang, T.P. Hogan, R. Funahashi, G.S. Nolas (Eds.), Materials and Technologies for Direct Thermal-to-Electric Energy Conversion: MRS Symposium Proceedings, Boston, December 2005, Vol. 886, Materials Research Society Press, Pittsburgh, PA, 2005, p 3.

    Google Scholar 

  27. T.M. Tritt, M.A. Subramanian, MRS Bulletin 31, 188 (2006).

    Article  Google Scholar 

  28. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Xhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, Z.F. Ren, Nano Letters 8, 4670 (2008).

    Article  CAS  Google Scholar 

  29. X. Wang, H. Lee, Y. Lan, G. Zhu, G. Joshi, D. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z. Ren, Applied Physics Letter 93, 193121 (2008).

    Article  CAS  Google Scholar 

  30. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z.F. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  31. A. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, D. Vashaee, Physical Review B 80, 155327 (2009).

    Article  CAS  Google Scholar 

  32. J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, , Z.F. Ren, Phys. Rev. B 80, 115329 (2009).

    Article  CAS  Google Scholar 

  33. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, Advanced Functional Materials 19, 2445 (2009).

    Article  CAS  Google Scholar 

  34. G.H. Zhu, H. Lee, Y.C. Lan, X. Wang, D.W.G. Joshi, R. Blair, M. Tang, D. Vashaee, P. Gogna, Z. Ren, J. Fleurial, G. Chen, M.S. Dresselhaus, Physical Review Letters 102 196803 (2009).

    Article  CAS  Google Scholar 

  35. J. Baxter, Z. Bian, G. Chen, D. Danielson, M.S. Dresselhaus, A.G. Fedorov, T.S Fisher, C.W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D.R. Rolison, T. Sands, L. Shi, D. Sholl, Y. Wu, Energy Environ. Sci. 2, 559 (2009).

    Article  CAS  Google Scholar 

  36. Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Letters 9, 1419 (2009).

    Article  CAS  Google Scholar 

  37. M.G. Kanatzidis, The role of solid-state chemistry in the discovery of new thermoelectric materials, in: T.~M. Tritt (Ed.), Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research II, Vol.~69, Academic Press, San Diego, CA, 2001, pp. 51--98.

    Chapter  Google Scholar 

  38. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 521 (3588), 554, (2008).

    Article  CAS  Google Scholar 

  39. C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315 (5810), 351 (2007).

    Article  CAS  Google Scholar 

  40. G.J. Snyder, E.S. Toberer, Nature Materials 7(2), 105 (2008).

    Article  CAS  Google Scholar 

  41. A. Henry, G. Chen, Physical Review B 79(14), 144305 (2009).

    Article  CAS  Google Scholar 

  42. A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, G. Chen, Physical Review L, submitted.

  43. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M.S. Dresselhaus, Z. Ren, G. Chen, Nano Letters, in press (2011).

  44. C. Hin, M.S. Dresselhaus, G. Chen, Applied Physics Letter, submitted.

  45. C. Uher, J. Yang, S. Hu, D. T. Morelli, and G. P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  CAS  Google Scholar 

  46. H. Hohl, A. P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, and E. Bucher, J. Phys.: Condens. Matter 11, 1697 (1999).

    CAS  Google Scholar 

  47. K. Mastronardi, D. Young, C. C.Wang, P. Khalifah, R. J. Cava, and A. P. Ramirez, Appl. Phys. Lett. 74, 1415 (1999).

    Article  CAS  Google Scholar 

  48. G.S. Nolas, D.T. Morelli, T.M. Tritt, Annu. Rev. Mater. Sci. 29(89), 116 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dresselhaus, M. The Evolution of Nanothermoelectricity. MRS Online Proceedings Library 1329, 201 (2011). https://doi.org/10.1557/opl.2011.1233

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.1233

Navigation