Skip to main content
Log in

Material Prospects of Reconfigurable Transistor (RFETs)–From Silicon to Germanium Nanowires

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Reconfigurable nanowire transistors provide the operation of unipolar p-type and n-type FETs freely selectable within a single device. The enhanced functionality is enabled by controlling the currents through two individually gated Schottky junctions. Here we analyze the impact of the Schottky barrier height on the symmetry of Silicon nanowire RFET transfer characteristics and their performance within circuits. Prospective simulations are carried out, indicating that germanium nanowire based RFETs of the same dimensions will show a distinctly increased performance, making them a promising material solution for future reconfigurable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Heinzig, S. Slesazeck, F. Kreupl, T. Mikolajick and W.M. Weber, Nano Lett. 12(1) (2012).

    Google Scholar 

  2. M. De Marchi, D. Sacchetto, S. Frache, {etet al.} IEEE Proc. IEDM 2012, 4–8.

  3. F. Wessely, T. Krauss, and U. Schwalke. Microelectronics Journal 2012.

    Google Scholar 

  4. M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De Franceschi Nano Lett. 12(6) 3074–3079, (2012).

    Article  CAS  Google Scholar 

  5. A. Heinzig, T. Mikolajick, J. Trommer, D. Grimm, and W.M. Weber, Nano Lett. 13(9) (2013).

    Google Scholar 

  6. E. H. Rhoderick, IEE Proceedings I (Solid-State and Electron Devices) 129.1, 1-14 (1982).

  7. K. Maex, M. V. Rossum in Properties of Metal Silicides (INSPEC: London, 1995).

    Google Scholar 

  8. Q. T. Zhao, U. Breuer, E. Rije, and S. Mantl, App. Phys. Lett. 86, 062108 (2005).

    Article  Google Scholar 

  9. L. Knoll, Q.T. Zhao, S. Habicht, C. Urban, K. K. Bourdelle and S. Mantll, IEEE Int. Workshop on Junction Tech. (IWJT) 2010, 1–5.

  10. International Technology Roadmap for Semiconductors ITRS 2011, 1–41.

  11. J. Trommer, A. Heinzig, S. Slesazeck, T. Mikolajick and W.M. Weber, IEEE Elec. Dev. Lett. 2013, (accepted)

    Google Scholar 

  12. J. Tang, C.Y. Wang, F. Xiu, Y. Zhou, L.-J. Chen and K. L. Wang. Advances in Materials Science and Engineering 2011

    Google Scholar 

  13. S. M. Sze and K. K. Ng in Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, New York, 2006) p. 850.

    Book  Google Scholar 

  14. T. N. Jackson, C.M. Ransom, J.F. DeGelormo, IEEE Elec. Dev. Lett. 12(11), (1991).

    Google Scholar 

  15. D. J. Hymes and J.J. Rosenberg J. Electrochem. Soc. 135(84) (1988).

    Google Scholar 

  16. E. H. Nicollian and J. R. Brews in MOS Physics and Technology (John Wiley & Sons, Hoboken, 2003). p. 212–221.

    Google Scholar 

Download references

Acknowledgments

This work was partly funded by “Deutsche Forschungsgemeinschaft (DFG)” in the framework of the project ReproNano (MI 1247/6-1) and within the Cluster of Excellence ‘CfAED’.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trommer, J., Heinzig, A., Heinrich, A. et al. Material Prospects of Reconfigurable Transistor (RFETs)–From Silicon to Germanium Nanowires. MRS Online Proceedings Library 1659, 225–230 (2014). https://doi.org/10.1557/opl.2014.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.110

Navigation