Skip to main content
Log in

4H-SiC P+N UV Photodiodes: Influence of Temperature and Irradiation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

4H-SiC p+n photodiodes based on ultrathin-junctions have been fabricated with distinct processes for the p+-region creation: either with Aluminium conventional ion implantation, or with Boron Plasma Ion Immersion Implantation. Spectral sensitivity measurements were performed at several temperatures from room temperature up to 340°C, with incident wavelengths ranging from 200 to 400 nm. Both responses are characterized by a stability between 200 and 270 nm, and a important increase with temperature between 270 and 380 nm. This fact has to be related to the two different kinds of optical absorption phenomena in SiC with respect to the wavelength, which are direct and indirect (phonon assisted) transitions. When decreasing the temperature, we noticed a hysteresis effect, which could be due to charge trapping by temperature activated defects. After strong proton and electron irradiations, the diodes showed a stability of the response below 270 nm, making them suitable for use in harsh environments. Simulation was performed at room temperature, with a good correlation between simulated and experimental room temperature curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. i. Sankin et V. p. Chelibanov, « Silicon Carbide UltravioletPhotodetectors and Their Application in Ecological Monitoring », physica status solidi (a), vol. 185, no 1, p. 153–158, 2001.

    Article  Google Scholar 

  2. S. Biondo, L. Ottaviani, M. Lazar, D. Planson, J. Duchaine, V. Le Borgne, M. A. ElKhakani, F. Milesi, W. Vervisch, O. Palais, et F. Torregrosa, « 4H-SiC P+N UV Photodiodes: A Comparison between Beam and Plasma Doping Processes », Materials Science Forum, vol. 717-720, p. 1203–1206, mai2012.

    Article  CAS  Google Scholar 

  3. X. Chen, H. Zhu, J. Cai, et Z. Wua, « High-performance 4H-SiC-based ultraviolet p-i-n photodetector », J. Appl. Phys, vol. 102, no 2, juill. 2007.

    Google Scholar 

  4. S. Biondo, M. Lazar, L. Ottaviani, W. Vervisch, V. Le Borgne, M. A. El Khakani, J. Duchaine, F. Milesi, O. Palais, et D. Planson, « 4H-silicon carbide thin junction based ultraviolet photodetectors », Thin Solid Films, vol. 522, p. 17–19, nov. 2012.

    Article  CAS  Google Scholar 

  5. N. Watanabe, T. Kimoto, et J. Suda, « 4H-SiC pn Photodiodes with Temperature-Independent Photoresponse up to 300 degrees C », Appl. Phys. Express, vol. 5, no 9, sept. 2012.

    Google Scholar 

  6. S. Nakagomi, T. Momo, S. Takahashi, et Y. Kokubun, « Deep ultraviolet photodiodes based on β-Ga2O3/SiCheterojunction », Applied Physics Letters, vol. 103, no 7, p. 072105, août 2013.

    Article  Google Scholar 

  7. D. Prasai, W. John, L. Weixelbaum, O. Krüger, G. Wagner, P. Sperfeld, S. Nowy, D. Friedrich, S. Winter, et T. Weiss, « Highly reliable silicon carbide photodiodes for visible-blind ultraviolet detector applications », Journal of Materials Research, vol. 28, no 01, p. 33–37, 2013.

    CAS  Google Scholar 

  8. L. Ottaviani, S. Biondo, S. Morata, O. Palais, T. Sauvage, et F. Torregrosa, « Influence of Heating and Cooling Rates of Post-Implantation Annealing Process on Al-Implanted 4H-SiC Epitaxial Samples », Materials Science Forum, vol. 645-648, p. 717–720, avr. 2010.

    Article  CAS  Google Scholar 

  9. H. Y. Tada et J. R. Carter, Solar cell radiation handbook. 1977.

    Google Scholar 

  10. B. Chen, Y. Yang, X. Xie, N. Wang, Z. Ma, K. Song, et X. Zhang, « Analysis of temperature-dependent characteristics of a 4H-SiCmetal-semiconductor-metal ultraviolet photodetector », Chin. Sci. Bull, vol. 57, no 34, p. 4427–4433, dec. 2012.

    Article  CAS  Google Scholar 

  11. S. Rathgeb, J.-P. Moeglin, A. Boffy M. Pasquinelli, et O. Palais, « Hysteresis phenomena in reverse biased InAsSbP/InAs heterostructure », Applied Physics Letters, vol. 89, no 2, p. 022106–022106–3, juill. 2006.

    Article  Google Scholar 

  12. P. B. Klein, « Identification and carrier dynamics of the dominant lifetime limiting defect in n- 4H-SiC epitaxial layers », physica status solidi (a), vol. 206, no 10, p. 2257–2272, 2009.

    Article  Google Scholar 

  13. T. Kimoto, K. Danno, et J. Suda, « Lifetime-killing defects in 4H-SiC epilayers and lifetime control by low-energy electron irradiation », physica status solidi (b), vol. 245, n° 7, p. 1327–1336, 2008.

    Article  CAS  Google Scholar 

  14. C. Cobet, K. Wilmers, T. Wethkamp, N. V. Edwards, N. Esser, et W. Richter, « Optical properties of SiC investigated by spectroscopic ellipsometry from 3.5 to 10 eV », Thin Solid Films, vol. 364, no 1-2, p. 111–113, mars 2000.

    Article  CAS  Google Scholar 

  15. S. Zollner, J. G. Chen, E. Duda, T. Wetteroth, S. R. Wilson, et J. N. Hilfiker, « Dielectric functions of bulk 4H and 6H SiC and spectroscopic ellipsometry studies of thin SiC films on Si », Journal of Applied Physics, vol. 85, no 12, p. 8353–8361, juin 1999.

    Article  CAS  Google Scholar 

Download references

acknowledgments

We thank C. Cobet of the Festkörper Physik Institut, Technische Universität Berlin for providing us his ellipsometric datas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bérenguier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bérenguier, B., Ottaviani, L., Biondo, S. et al. 4H-SiC P+N UV Photodiodes: Influence of Temperature and Irradiation. MRS Online Proceedings Library 1693, 1–6 (2014). https://doi.org/10.1557/opl.2014.565

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.565

Navigation