Skip to main content
Log in

Air Bridge and Vertical Carbon Nanotube Switches for High Performance Switching Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT. Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb electrode. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied. The switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 – 300 nm wide, ~ 1 µm deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw CNT switch architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kim and C. M. Lieber, Science 286, 2148 (1999).

    Article  CAS  Google Scholar 

  2. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, Science 289, 94 (2000).

    Article  CAS  Google Scholar 

  3. P. G. Collins, K. B. Bradley, M. Ishigamo, and A. Zettl, Science 287, 120 (2000).

    Article  Google Scholar 

  4. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).

    Article  CAS  Google Scholar 

  5. M. Dequesnes, S. V. Rotkin and N. R. Aluru, Nanotech. 13, 120 (2002).

    Article  Google Scholar 

  6. B. M. Segal, D. K. Block, R. Thomas, Electromechanical memory array using nanotubes ribbons and method for making same, US Patent 6, 919, 592, 2004.

  7. J. M. Kinaret, T. Nord, and S. Viefers, Appl. Phys. Lett., 82, 1287 (2003).

    Article  CAS  Google Scholar 

  8. S. W. Lee, D. S. Lee, R. E. Morjan, S. H. Jhang, M. Sveningsson, O. A. Nerushev, Y. W. Park, and E. E. B. Campbell, Nano. Lett. 4, 2027 (2004).

    Article  CAS  Google Scholar 

  9. S. N. Cha, J. E. Jang, Y. Choi, and G. A. J. Amaratunga, D. J. Kang, D. J. Hasko, J. E. Jung and J. M. Kim, Appl. Phys. Lett. 86, 083105-1 (2005).

    Article  Google Scholar 

  10. E. Dujardin, V. Derycke, M. F. Goffman, R. Lefevre, and J. P. Bourgoin, Appl. Phys. Lett. 87, 193107-1 (2005).

    Article  Google Scholar 

  11. A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, accepted, to appear in Nano Letters, April 2006.

  12. D. Peroulis, S. P. Pacheco, K. Sarabandi, L. P. B. Katehi, IEEE Trans. on Microwave Theory and Tech. 51, 259 (2003).

    Article  CAS  Google Scholar 

  13. S. Duffy, et al., IEEE Microwave Wireless Comp. Lett. 11, 106 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaul, A.B., Wong, E.W., Epp, L. et al. Air Bridge and Vertical Carbon Nanotube Switches for High Performance Switching Applications. MRS Online Proceedings Library 924, 604 (2006). https://doi.org/10.1557/PROC-0924-Z06-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0924-Z06-04

Navigation