Skip to main content
Log in

Transition Metal Doped ZnO for Spintronics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

ZnO is a very promising material for spintronics applications, with many groups reporting room temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during PLD, we find an inverse correlation between magnetization and electron density as controlled by Sn doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for the ferromagnetism include the bound magnetic polaron model or exchange is mediated by carriers in a spin-spilt impurity band derived from extended donor orbitals. Spin-dependent phenomena in ZnO may lead to devices with new or enhanced functionality, such as polarized solid-state light sources and sensitive biological and chemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. von Molnar and D. Read, Proc.IEEE, 91, 715(2003).

    Article  CAS  Google Scholar 

  2. H. Ohno, J. Vac. Sci.Technol B, 18, 2039 (2000).

    Article  CAS  Google Scholar 

  3. T. Dietl, Semicond. Sci. Technol., 17, 377 (2002).

    Article  CAS  Google Scholar 

  4. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim and L.A. Boatner, J.Appl.Phys. 93 1(2003)

    Article  CAS  Google Scholar 

  5. S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner and J.D. Budai, Mat.Sci.Eng.R. 40 137(2003).

    Article  Google Scholar 

  6. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000).

    Article  CAS  Google Scholar 

  7. K. Sato and H. Katayama-Yoshida, Semicond.Sci.Technol. 17,367(2002).

    Article  CAS  Google Scholar 

  8. W. Prellier, A. Fouchet and B. Mercey, J.Phys.Condensed Matter 15, R1583(2003).

    Article  CAS  Google Scholar 

  9. T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma and M. Kawasaki, Appl.Surface.Sci.(in press).

  10. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science, 291, 854(2001).

    Article  CAS  Google Scholar 

  11. Y. Matsumoto, R. Takahashi, M. Murakami, T. Koida, X. J. Fan, T. Hasegawa, T. Fukumura, M. Kawasaki, S.Y. Koshihara, and H. Koinuma, Japan. J. Appl. Phys., 40,L1204 (2001).

    Article  CAS  Google Scholar 

  12. K. Sato and H. Katayama-Yoshida, Japan J. Appl. Phys., 39, L555 (2000).

    Article  CAS  Google Scholar 

  13. K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett., 79, 988(2001).

    Article  CAS  Google Scholar 

  14. S.G. Yang, A.B. Pakhomov, S.T. Hung and C.Y. Wong, IEEE Trans.Magn. 38,2877(2002).

    Article  CAS  Google Scholar 

  15. N. Wakano, Y. Fujimura, N. Morinaga, A. Abe, N. Ashida, and T. Ito, Physica E, 10,260(2001)

    Article  CAS  Google Scholar 

  16. T. Fukumura, Z.W. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999).

    Article  CAS  Google Scholar 

  17. M. Berciu and R.N. Bhatt, 2001, Phys. Rev. Lett. 87, 108203 (2001)

    Article  CAS  Google Scholar 

  18. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito, Physica C 10, 260 (2001).

    CAS  Google Scholar 

  19. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999).

    Article  CAS  Google Scholar 

  20. S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee, and S. Cho, Appl. Phys. Lett. 80, 4561 (2002).

    Article  CAS  Google Scholar 

  21. D.P. Norton, S.J. Pearton, A.F. Hebard N. Theodoropoulou, L.A. Boatner, and R.G. Wilson, Appl Phys. Lett. 82,239(2003).

    Article  CAS  Google Scholar 

  22. D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, J.D. Budai, L.A. Boatner, M.F. Chisholm, J.S. Lee, Z.G. Khim, Y.D. Park and R.G. Wilson, Appl.Phys.Lett. 83(2003)

  23. K. Sato and H. Katayama Yoshida, Mat.Res.Soc.Symp. Proc. Vol. 666, F4.6.1(2001)

    Article  Google Scholar 

  24. S.R. Shinde, S.B. Ogale, S.D. Sarma, J.R. Simpson, H. D. Drew, S.E. Hofland, C. Lanci, J.P. Buban, N.D. Browning, V.N. Kulkarni, J. Higgins, R.P. Sharma, R.L. Greene and T. Venkatesan, Phys.Rev.B. 67, 115211(2003).

    Article  CAS  Google Scholar 

  25. A. Punnoose, M.S. Seedra, W.K. Park and J.S. Moodera, J.Appl.Phys. 93,7867(2003).

    Article  CAS  Google Scholar 

  26. H. Nakagawa and H. Katayama-Yoshida, Jap. J. Appl. Phys. 40, L1355 (2001).

    Article  Google Scholar 

  27. M. Berciu and R.N. Bhatt, Physica B 312/313, 815 (2002).

    Article  Google Scholar 

  28. A.C. Durst, R.N. Bhatt and P.A. Wolff, Phys. Rev. B 65, 235205 (2002).

    Article  CAS  Google Scholar 

  29. J.-H. Kim, H. Kim, D. Kim, Y.-E. Ihm and W.-K. Choo, J.Appl.Phys. 92,6066(2002).

    Article  CAS  Google Scholar 

  30. H. Saeki, H. Tabata, and T. Kawai, Solid-State Commun. 120,439(2001).

    Article  CAS  Google Scholar 

  31. Y.M. Cho, W.-K. Choo, H. Kim, D. Kim and Y.-E. Ihm, Appl.Phys.Lett. 80,3358(2002).

    Article  CAS  Google Scholar 

  32. H.J. Lee, S.Y. Jeong, C.R. Cho and C.H. Park, Appl.Phys.Lett. 81,4020(2002).

    Article  CAS  Google Scholar 

  33. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja .,. J.M.Osorio Guillen, B. Johansson and .G.A. Gehring, Nature Mat. 2 673.(2003)

    Article  CAS  Google Scholar 

  34. S.J. Hahn, J.W. Song, C.H. Yang, S.H. Park, J.H. Park, Y.H. Jeong and K.W. Rhie, Appl.Phys.Lett. 81,421292002).

  35. K. Rode, R. Mattana, O. Durand and R. LeBourgeois, J.Appl.Phys. 93, 7676 (2003).

    Article  CAS  Google Scholar 

  36. N. Theordoropoulou et al. (to be published).

  37. R.L. Hoffman, J.Appl.Phys. 95 5813(2004).

    Article  CAS  Google Scholar 

  38. Y. Ohya, T. Niwa, T. Ban, and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40, 297 (2001).

    Article  CAS  Google Scholar 

  39. Y. Kwon, Y. Li, D.P. Norton, Z.V. Park, and S. Li, Appl. Phys. Lett. 84, 2685 (2004)

    Article  CAS  Google Scholar 

  40. S. Masuda, K. Kitamura and S. Miyatake, J. Appl. Phys. 93, 1624 (2003).

    Article  CAS  Google Scholar 

  41. R.L. Hoffman, B.J. Norris, and J.F. Wager, Appl. Phys. Lett. 82, 733 (2003).

    Article  CAS  Google Scholar 

  42. P.F. Carcia, R.S. McLean and G. Nunes Jr, Appl. Phys. Lett. 82, 1117 (2003).

    Article  CAS  Google Scholar 

  43. J.F. Wager, Science 300, 1245 (2003).

    Article  CAS  Google Scholar 

  44. K. Nomura, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, Science 300, 1269 (2003)

    Article  CAS  Google Scholar 

  45. J. Nishii, F.M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, and M. Kawasaki, Jpn. J. Appl. Phys., Part 2 42, L347 (2003)

    Article  CAS  Google Scholar 

  46. Hiromichi Ohta and Hideo Hosono, Materials Today, 7 42(2004).

    Article  CAS  Google Scholar 

  47. R.L. Hoffman, J.Appl.Phys. 95 5813(2004).

    Article  CAS  Google Scholar 

  48. Y. Ohya, T. Niwa and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40, 297 (2001).

    Article  CAS  Google Scholar 

  49. Y. Kwon, Y. Li, Y.W. Heo, M. Jones, P. H. Holloway, D.P. Norton, Z.V. Park, and S. Li, Appl. Phys. Lett. 84, 2685 (2004)

    Article  CAS  Google Scholar 

  50. S. Masuda, K. Kitamura and S. Miyatake, J. Appl. Phys. 93, 1624 (2003).

    Article  CAS  Google Scholar 

  51. R.L. Hoffman, B.J. Norris, and J.F. Wager, Appl. Phys. Lett. 82, 733 (2003).

    Article  CAS  Google Scholar 

  52. P.F. Carcia, R.S. McLean and G. Nunes Jr, Appl. Phys. Lett. 82, 1117 (2003).

    Article  CAS  Google Scholar 

  53. J.F. Wager, Science 300, 1245 (2003).

    Article  CAS  Google Scholar 

  54. K. Nomura, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, Science 300, 1269 (2003)

    Article  CAS  Google Scholar 

  55. Hiromichi Ohta and Hideo Hosono, Materials Today, 7 42(2004).

    Article  CAS  Google Scholar 

  56. Q. Wan, Q.H. Li, Y.J. Chen, T. Wang, J.P. Li and C.L. Lin, Appl.Phys.Lett. 84 3654(2004).

    Article  CAS  Google Scholar 

  57. K. Keem, B.Min, K. Cho, M.Y. Sung and S. Kim, Appl.Phys.Lett. 84 4376(2004).

    Article  CAS  Google Scholar 

  58. D.C. Look, Mater.Sci. Eng. B80 383 (2001).

    Article  CAS  Google Scholar 

  59. I. Buyanova, W.M. Chen, M. Ivill, R. Pate, D.P. Norton, S.J. Pearton, J. Dong, A. Osinsky, B. Hertog, A. Dabiran and P.P. Chow, J.Vac. Sci.Technol. Vol. 24,259, (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearton, J.S., Norton, P.D., Ivill, P.M. et al. Transition Metal Doped ZnO for Spintronics. MRS Online Proceedings Library 999, 304 (2007). https://doi.org/10.1557/PROC-0999-K03-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0999-K03-04

Navigation