Skip to main content
Log in

Development of a Lab-on-a-Chip for the Characterization of Human Cells

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Microfabricated biochips are developed to continuously monitor cellular phenotype dynamics in a non-invasive manner. In the presented work we describe the novel combination of contact-less micro-dielectric sensors and microfluidics for quantitative cell analysis. The cell chip consists of a polymeric fluidic (PDMS) system bonded to a glass wafer containing the electrodes while temperature and fluid flow are controlled by external heating and pumping stations. Additionally, the cell chip contains an integrated reference arm providing a low-noise detection environment by eliminating background signals and interferences. The high-density interdigitated capacitors (µIDC) are designed to monitor living cells in a space of approximately 10 nL volume by controlling critical electrode characteristics, such as size, shape and passivation composition as well as thickness. The integrated µIDCs are isolated by a 300 nm multi-passivation layer of defined dielectric property and provide non-invasive, stable, robust and non-drifting measurement conditions. The performance of this detector is evaluated using various bacterial, yeast and mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Storz and R. Hengge-Aronis, Bacterial Stress Responses (ASM Press, Washington D.C., 2000).

    Google Scholar 

  2. A. R. M. Coates, Dormancy and Low-Growth States in Microbial Disease (Cambridge University Press, Cambridge, 2003).

    Book  Google Scholar 

  3. D. N. Breslauer, P. J. Lee, and L. P. Lee, Molec. BioSystems 2, 97–112 (2006).

    Article  CAS  Google Scholar 

  4. D. J. Weatherall, Nature Rev. Gen. 2, 245–255 (2001).

    Article  CAS  Google Scholar 

  5. M. Hirotada, J. Biochem . Molec. Biol. 37, 83–92 (2004).

    Google Scholar 

  6. T. Vilkner, d. Janasek, and A. Manz, Anal. Chem. 76, 3373–3386 (2004).

    Article  CAS  Google Scholar 

  7. P.-A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, Anal. Chem. 74, 2637–2652 (2002).

    Article  CAS  Google Scholar 

  8. G. M. Whitesides, Nature Biotech. 21, 1161–1165 (2003).

    Article  CAS  Google Scholar 

  9. C. Ionescu-Zanetti, R. M. Shaw, J. Seo, Y. Jan, L. Y. Jan, and L. P. Lee, PNAS U.S.A 102, 9112–9117 (2005).

    Article  CAS  Google Scholar 

  10. P. S. Dittrich and A. Manz, Nature 5, 210–218 (2006).

    Article  CAS  Google Scholar 

  11. G. H. Markx and C. L. Davey, Enzyme Microb.Technol. 25, 161–171 (1999).

    Article  CAS  Google Scholar 

  12. J. Suehiro, R. Hamada, m, D. Noutomi, M. Shutou, and M. Hara, J. Electrostat. 57, 157–168 (2003).

    Article  Google Scholar 

  13. S. Arndt, J. Seebach, K. Psathaki, H.-J. Galla, and J. Wegener, Biosens. Bioelectron. 19, 583–594 (2004).

    Article  CAS  Google Scholar 

  14. R. Gomez, D. T. Morisette, and R. Bashir, IEEE Micromechanical Systems 14, 829–838 (2005).

    Article  Google Scholar 

  15. J. H. Yeon and J.-K. Park, Anal. Biochem. 341, 308–315 (2005).

    Article  CAS  Google Scholar 

  16. J. E. Yardley, D. B. Kell, J. Barrett, and C. L. Davey, Biotechnol. Genet. Eng. Rev. 17, 3–35 (2000).

    Article  CAS  Google Scholar 

  17. R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, and B. Wolf, Med. Biol. Eng. Comp. 36, 365–370 (1998).

    Article  CAS  Google Scholar 

  18. D. Prodan, F. Mayo, J. R. Claycomb, and H. H. Miller, J. Appl. Phys. 95, 3754–3756 (2004).

    Article  CAS  Google Scholar 

  19. K. Asami, J. of Non-Crystalline Solids 305, 268–277 (2002).

    Article  CAS  Google Scholar 

  20. Y. Polevaya, I. Ermolina, M. Schlesinger, B. Z. Ginzburg, and Y. Felman, Biochim. Biophys. Acta 1419, 257–271 (1999).

    Article  CAS  Google Scholar 

  21. G. J. Ciambrone, V. F. Liu, D. C. Lin, R. P. McGuinness, G. K. Leung, and S. Pitchford, J. Biomolec. Screening 9, 467–480 (2004).

    Article  CAS  Google Scholar 

  22. P. V. Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M. O. De Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens, Sens. Actuators B 49, 73–80 (1998).

    Article  Google Scholar 

  23. R. Igreja and C. J. Dias, Sens. Actuators A 112, 291–301 (2004).

    Article  CAS  Google Scholar 

  24. D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, Anal. Chem. 64, 1926–1932 (1992).

    Article  CAS  Google Scholar 

  25. K. Asami, K. Takashashi, and K. Shirahige, Yeast (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertl, P., Richter, L., Mak, A. et al. Development of a Lab-on-a-Chip for the Characterization of Human Cells. MRS Online Proceedings Library 1004, 505 (2007). https://doi.org/10.1557/PROC-1004-P05-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1004-P05-05

Navigation