Skip to main content
Log in

Nanocomposites to Enhance Zt in Thermoelectrics

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The concept of using “self-assembled” and “force-engineered” nanostructures to enhance the thermoelectric figure of merit relative to bulk homogeneous and composite materials is presented in general terms. Specific application is made to the Si-Ge system for use in power generation at high temperature. The scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity are emphasized along with the practical advantages of having bulk samples for property measurements and a straightforward path to scale-up materials synthesis and integration of nanostructured materials into thermoelectric cooling and power generation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727–12731 (1993).

    Article  CAS  Google Scholar 

  2. L. D. Hicks, T. C. Harman, and M. S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).

    Article  CAS  Google Scholar 

  3. Lon Bell report at the Industrial Physics Forum, of the American Vacuum Society and the American Institute of Physics, Seattle, WA, Oct 2007.

  4. B.Y. Moyzhes and V. Nemchinsky, Appl. Phys. Lett., 73, 1895–1897 (1998).

    Article  CAS  Google Scholar 

  5. T. Koga, X. Sun, S. B. Cronin, and M. S. Dresselhaus, Appl. Phys. Lett. 73, 2950–2952 (1998).

    Article  CAS  Google Scholar 

  6. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229–2232 (2002).

    Article  CAS  Google Scholar 

  7. Rama Venkatasubramanian, E. Siivola, Thomas Colpitts, and Brooks O’Quinn, Nature (London) 413, 597–602 (2001).

  8. Kuei Fang Hsu, Sim Loo, Fu Guo, Wei Chen, Jeffrey S. Dyck, Ctirad Uher, Tim Hogan, E. K. Polychroniadis, and Mercouri G. Kanatzidis, Science 303, 818-821 (2004).

    Article  CAS  Google Scholar 

  9. J. Androulakis, K. F. Hsu, R. Pcionek, H. Kong, C. Uher, J. J. D’Angelo, A. Downey, T. Hogan, and M. G. Kanatzidis, Advanced Materials 18, 1170–1173 (2006).

    Article  CAS  Google Scholar 

  10. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Advanced Materials 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  11. Deyu Li, Yiying Wu, Philip Kim, Li Shi, Peidong Yang, and Arun Majumdar, Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article  CAS  Google Scholar 

  12. Deyu Li, Yiying Wu, Rong Fan, Peidong Yang, and Arun Majumdar, Appl. Phys. Lett. 83, 3186– 3188 (2003).

    Article  CAS  Google Scholar 

  13. C. Dames and G. Chen, J. Appl. Phys. 95, 682–693 (2004).

    Article  CAS  Google Scholar 

  14. C. Dames and G. Chen, “Thermal Conductivity of Nanostructured Thermoelectric Materials”, CRC Handbook, edited by M. Rowe, pp.42-1 to 42-16, (2006), Taylor and Francis, Boca Raton.

    Google Scholar 

  15. Ming-Shan Jeng, Ronggui Yang, David Song, and Gang Chen. In Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, pages HT2005-72780, American Society of Mechanical Engineers, New York, 2005.

    Google Scholar 

  16. Ronggui Yang, Gang Chen, and M. S. Dresselhaus, Phys. Rev. B 72, 125418 (2005).

    Article  Google Scholar 

  17. Ronggui Yang. Nanoscale Heat Conduction with Applications in Thermoelectrics and Nanoelectronics. PhD thesis, Massachusetts Institute of Technology, December 2005. Department of Mechancial Engineering.

  18. G. A. Slack, in Solid State Physics, page 1, edited by D. Turnbull and H. Ehrenreich (Academic, New York, 1979), Vol. 34.

    Google Scholar 

  19. A. Henry and G. Chen, Spectral Phonon Properties of Silicon Based Molecular Dynamics and Lattice Dynamics Simulations, Journal of Computational and Theoretical Nanosciences, accepted.

  20. Vining C.B. and Fleurial J.P., “Silicon-Germanium: an Overview of Recent Developments”, A Critical Review of Space Nuclear Power and Propulsion 1984-1993, American Institute of Physics, ed. M. El-Genk, New-York, 87–120 (1994).

    Google Scholar 

  21. T. C. Harman, D. L. Spears, and M. J. Manfra, J. Electron. Mater. 25, 1121 (1996).

    Article  CAS  Google Scholar 

  22. T. C. Harman, D. L. Spears, D. R. Calawa, S. H. Groves, and M. P. Walsh. In Sixteenth International Conference on Thermoelectrics: Proceedings, ICT’97; Dresden, Germany, edited by Armin Heinrich and Joachim Schumann, page 416, Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ 09955-1331, 1997.

    Google Scholar 

  23. L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 53, 10493–10496 (1996).

    Article  Google Scholar 

  24. G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7426 (1996).

  25. K. Hoang, S. D. Mahanti, and P. Jena, Phys. Rev. B 76, 115432 (2007).

    Article  Google Scholar 

  26. T. Geballe and R. N. Hall, Phys. Rev. 98, 940 (1955).

    Article  CAS  Google Scholar 

  27. R. N. Hall, Solid-State Electronics 2, 115 (1958).

    Article  Google Scholar 

  28. J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, J. Appl. Phys. 35, 2899– 2907 (1964).

    Article  CAS  Google Scholar 

  29. F.D. Rosi, J.P. Dismukes, and E.F. Hockings, Electrical Engineering 79(6), 450–459 (1960).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dresselhaus, M.S., Chen, G., Ren, Z. et al. Nanocomposites to Enhance Zt in Thermoelectrics. MRS Online Proceedings Library 1044, 204 (2007). https://doi.org/10.1557/PROC-1044-U02-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1044-U02-04

Navigation