Skip to main content
Log in

Ambient Copper-Copper Thermocompression Bonding using Self Assembled Monolayers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A typical copper-copper thermocompression bonding process is carried out in an ultrahigh vacuum (UHV) or inert environment at a bonding temperature >300°C. The ultraclean environment serves a single purpose – to maintain oxide-free copper surfaces, allowing intimate physical contact between copper atoms. This study investigates the temperature dependence of direct copper bonding from room temperature to 300°C under ambient condition. An anomalous thermal dependence of bond strength occurs between 80°C to 140°C where an increase in bonding temperature within this regime is in fact, detrimental to joint strength. This is interpreted as a thermal competition between oxidation and bond formation. This study also demonstrates that by simply coating the copper surface with a self assembled monolayer of 1-undecanethiol prior to bonding, Cu joints can be successfully formed at close to ambient temperature without a vacuum, yielding joint shear strengths on the order of 70MPa. The densely packed monolayer serves to passivate the copper surface against oxidation under ambient conditions. The ultrathin organic monolayer structure, as compared to a bulk oxide layer, could be easily displaced during the mechanical deformation at the bonding interface which accompanies thermocompression. This method could be an effective simple bonding solution for three-dimensional integrated chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Buchanan, “The evolution of interconnect technology for silicon integrated circuitry.,” in The International Conference on Compound Semiconductor Manufacturing Technology (GaAsMANTECH), 2002.

  2. R. Liu, C.-S. Pai, and E. Martinez,” Solid-State Electronics, 43, 1003–1009, (1999).

    Article  CAS  Google Scholar 

  3. K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat,” Proceedings of the IEEE, 89, 602–633, (2001).

    Article  CAS  Google Scholar 

  4. K. N. Chen, C. S. Tan, A. Fan, and R. Reif,” Electrochem. Solid-State Lett., 7, G14, (2004).

    Article  CAS  Google Scholar 

  5. K. N. Chen, A. Fan, C. S. T. and, and R. Reif,” J. Electron Mat, 32, 1371 -1374, (2003).

    Article  CAS  Google Scholar 

  6. T. Branschwiler and B. Michel, “Thermal Management of Vertically Integrated Packages,” in Handbook of 3D Integration:Technology and Applications of 3D Integrated Circuits vol. 2, P. Garrou, C. Bower, and P. Ramm, Eds.: WILEY-VCH Verlag GmbH & Co., (2008).

  7. K. N. Chen, S. M. Chang, L. C. Shen, and R. Reif,” J. Electron Mat, 35, 1082–1086, (2006).

    Article  CAS  Google Scholar 

  8. K. N. Chen, A. Fan, C. S. Tan, and R. Reif,” J. Electron Mat, 35, 230, (2006).

    Article  Google Scholar 

  9. CS. Tan, K.N. Chen, A. Fan, and R. Reif,” J. Electron Mat, 34, 1598, (2005).

    Article  CAS  Google Scholar 

  10. K. N. Chen, C. S. Tan, A. Fan, and R. Reif,” Electrochem. Solid-State Lett., 7, G14–G16, (2004).

    Article  CAS  Google Scholar 

  11. A. Fan, A. Rahman, and R. Reif,” Electrochem. Solid-State Lett., 2, 534–536, (1999).

    Article  CAS  Google Scholar 

  12. K. N. Chen, A. Fan, and R. Reif,” J. Electron Mat, 30, 331, (2001).

    Article  Google Scholar 

  13. K. N. Chen, A. Fan, and R. Reif,” J. Mat. Sci, 37, 3441, (2002).

    Article  CAS  Google Scholar 

  14. P. E. L. a. G. M. Whitesides,” J. Am. Chem. Soc, 114, 9022–9028, (1992).

    Article  Google Scholar 

  15. K. N. Chen, “Copper Wafer Bonding In Three-Dimensional Integration,” in Electrical Engineering and Computer Science, vol. Doctor of Philosophy Boston, MA: Massachusetts Institute of Technology, 2005.

  16. K. N. Chen, C. S. Tan, A. Fan, and R. Reif,” J. Electron Mat, 34, 1464 - 1467, (2005).

    Article  CAS  Google Scholar 

  17. T. H. Youssef and R. A. Essawi,” Czech. J. Phys, 29, 1266, (1979).

    Article  Google Scholar 

  18. D. L. Cocke, R. Schennach, M. A. Hossain, D. E. Mencer, H. McWhinney, J. R. Parga, M. Kesmez, J. A. G. Gomes, and M. Y. A. Mollah,” Vacuum, 79, 71–83, (2005).

    Article  CAS  Google Scholar 

  19. H. Derin and K. Kantarli,” App. Phys. A, 75, 391, (2002).

    Article  CAS  Google Scholar 

  20. H. Wieder and A. W. Czanderna,” J. Appl. Phys, 37, 184–187, (1966).

    Article  CAS  Google Scholar 

  21. Y. Yamamoto, H. Nishihara, and K. Aramaki,” J Electrochem Soc, 140, 436–443, (1993).

    Article  CAS  Google Scholar 

  22. G. K. Jennings and P. E. Laibinis,” Colloids Surf., A, 116, 105–114, (1996).

    Article  CAS  Google Scholar 

  23. Y. Q. Feng, W. K. Teo, K. S. Siow, Z. Q. Gao, K. L. Tan, and A. K. Hsieh,” J Electrochem Soc, 144, 55–64, (1997).

    Article  CAS  Google Scholar 

  24. A. Krishnamoorthy, K. Chanda, S. P. Murarka, G. Ramanath, and J. G. Ryan,” Appl. Phys. Lett, 78, 2467–2469, (2001).

    Article  CAS  Google Scholar 

  25. N. Mikami, N. Hata, T. Kikkawa, and H. Machida,” Appl. Phys. Lett, 83, 5181–5183, (2003).

    Article  CAS  Google Scholar 

  26. Y. S. Tan, M. P. Srinivasan, S. O. Pehkonen, and Y. M. C. Simon,” J. Vac. Sei. Technol., A, 22, 1917–1925, (2004).

    Article  CAS  Google Scholar 

  27. F. Zucchi, V. Grassi, A. Frignani, and G. Trabanelli,” Corros. Sci., 46, 2853–2865, (2004).

    Article  CAS  Google Scholar 

  28. D. A. Hutt and C. Liu,” Appl. Surf Sci., 252, 400–411, (2005).

    Article  CAS  Google Scholar 

  29. K. N. Chen, A. Fan, and R. Reif,” J. Mat. Sci, 37, 3441–3446, (2002).

    Article  CAS  Google Scholar 

  30. X. F. Ang, F. Y. Li, J. Wei, W. L. Tan, and C. C. Wong,” Thin Solid Films, 516, 5721–5724, (2008).

    Article  CAS  Google Scholar 

  31. X. F. Ang, Z. Chen, C. C. Wong, and J. Wei,” Appl. Phys. Lett, 92, 131913, (2008).

    Article  Google Scholar 

  32. X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Low Temperature Direct Metal Bonding by Self Assembled Monolayers,” in Materials Research Society Symposium Proceedings, vol. 990 San Francisco, US, 2007, pp. 0990-B10-03.

  33. P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo,” J. Am. Chem. Soc, 113, 7152–7167, (1991).

    Article  CAS  Google Scholar 

  34. H. L. Leong, C. L. Gan, C. V. Thompson, K. L. Pey, and H. Y. Li,” J. Appl. Phys, 102, 103510, (2007).

    Article  Google Scholar 

  35. H. L. Leong, C. L. Gan, C. V. Thompson, K. L. Pey, and H. Y. Li, “Effects of Nanometer-Scale Surface Roughness and Applied Load on the Bond Strength and Contact Resistance of Cu-Cu Bonded 3D ICs,” in Materials Research Society: Symposium Proceedings, Boston, MA, 2007, pp. 1036-M02-05.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ang, X.F., Wei, J., Chen, Z. et al. Ambient Copper-Copper Thermocompression Bonding using Self Assembled Monolayers. MRS Online Proceedings Library 1112, 203 (2008). https://doi.org/10.1557/PROC-1112-E02-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1112-E02-03

Navigation