Skip to main content
Log in

The Promise of Nanocomposite Thermoelectric Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The concept of using nanocomposite thermoelectric materials in bulk form for practical applications is presented. Laboratory studies have shown the possibilities of nanostructures to yield large reductions in the thermal conductivity while at the same time increasing the power factor. Theoretical studies have suggested that structural ordering in nano-systems is not necessary for the enhancement of ZT, leading to the idea of using nanocomposites as a practical scale-up technology for making bulk thermoelectric materials with enhanced ZT values. Specific examples are presented of nanocomposite thermoelectric materials developed by our group based on the familiar silicon germanium system, showing enhanced thermoelectric performance through nano-structuring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Population data from 1950 – 2050: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. World Population Prospects: The 2008 Revision. United Nations, 2008.

  2. Population data from 1750 – 1950: United Nations. The World at Six Billion. United Nations, 1999.

  3. U.S. Department of Energy. Energy Information Administration. Report# DOE/EIA-0484: International Energy Outlook 2008. Washington: Government Printing Office (2008).

  4. J.T. Houghton et al., Climate change 2001: The Scientific Basis. (IPCC, Cambridge, UK, 2001).

    Google Scholar 

  5. World International Renewable Energy Conference, Washington, 2008.

  6. International Energy Agency. Energy to 2050: Scenarios for a Sustainable Future. (IEA, France 2003).

    Google Scholar 

  7. X. Shi et al., Appl. Phys. Lett. 92 182101, (2008).

    Google Scholar 

  8. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413 597–602 (2001).

    CAS  Google Scholar 

  9. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297 (5590) 2229–2232 (2002).

    CAS  Google Scholar 

  10. B. Poudel et al., Science 320 (5876) 634–638 (2008).

    CAS  Google Scholar 

  11. J.P. Heremans et al., Science 321 (5888) 554–557 (2008).

    CAS  Google Scholar 

  12. R. Yang, Ph.D. dissertation, Massachusetts Institute of Technology, 2006.

  13. A.S. Henry and G. Chen, J. Comput. Theor. Nanosci., 5, 141–152 (2008).

    CAS  Google Scholar 

  14. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G.Chen, Energy Environ. Sci. (in press).

  15. M.S. Dresselhaus et al., Advanced Materials, 19, 1043–1053 (2007).

    CAS  Google Scholar 

  16. G. Joshi et al., Nano Lett. 8 (12) 4670–4674 (2008).

    CAS  Google Scholar 

  17. X.W. Wang et al., Appl. Phys. Lett. 93 193121 (2008).

    Google Scholar 

  18. G. Zhu et al., Phys. Rev. Lett. (in press).

  19. K. Matsubara, in 21st International Conference on Thermoelectrics, Portland, OR, 2002, pp. 418–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dresselhaus, M.S., Chen, G., Ren, Z.F. et al. The Promise of Nanocomposite Thermoelectric Materials. MRS Online Proceedings Library 1166, 201 (2009). https://doi.org/10.1557/PROC-1166-N02-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1166-N02-01

Navigation