Skip to main content
Log in

Enhancement of Photovoltaic Device Performance in Close-Packed Nanowire Excitonic Solar Cells by Förster Resonance Energy Transfer (FRET)

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Our ability to fabricate close-packed single crystal rutile TiO2 nanowire arrays with average inter-wire distances of 5-10 nm allows us to create and control FRET-induced coupling effects, which can occur in this distance regime, in this architecture. We explored the use of such coupling to boost the performance of nanowire excitonic solar cells. Using Ru complex triplet dye N719 as the energy acceptor and fluorescent tetra tert-butyl substituted zinc phthalocyanine as the energy donor (see Fig. 1 for molecular structures), we obtained up to a four fold improvement in the quantum yield for red photons in the 660-690 nm spectral range. Similarly, by using a carboxylated unsymmetrical squaraine dye as the energy acceptor and highly fluorescent Nile Red dye as the donor (see Fig. 1 for molecular structures), we obtained 60% increased external quantum yields for photons in the 480-580 nm spectral range. For both systems, the use of FRET broadened spectral coverage and improved light harvesting. In this report, we also develop fundamental design principles in choosing donor-acceptor combinations for high efficiency FRET-enhanced solar cells in nanowire array architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gratzel, Accounts of Chemical Research 42 (11), 1788 (2009).

    Article  CAS  Google Scholar 

  2. B. C. O’Regan, I. Lopez-Duarte, M. V. Martinez-Diaz, A. Forneli, J. Albero, A. Morandeira, E. Palomares, T. Torres, J. R. Durrant, Journal of the American Chemical Society 130 (10), 2906 (2008).

    Article  Google Scholar 

  3. X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, Nano Letters 8 (11), 3781 (2008).

    Article  CAS  Google Scholar 

  4. T. Forster, Discussions of the Faraday Society (27), 7 (1959).

    Article  Google Scholar 

  5. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Third ed. (Springer, New York, 2006) page 335.

    Book  Google Scholar 

  6. J. H. Yum, P. Walter, S. Huber, D. Rentsch, T. Geiger, F. Nuesch, F. De Angelis, M. Gratzel, and M. K. Nazeeruddin, Journal of the American Chemical Society 129 (34), 10320 (2007).

    Article  CAS  Google Scholar 

  7. B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Gratzel, and M. D. McGehee, Nature Photonics 3 (7), 406 (2009).

    Article  CAS  Google Scholar 

  8. K. Shankar, X. Feng, and C. A. Grimes, ACS Nano 3 (4), 788 (2008).

    Article  Google Scholar 

  9. F. De Angelis, S. Fantacci, A. Selloni, M. Gratzel, and M. K. Nazeeruddin, Nano Letters 7 (10), 3189–3195 (2007).

    Article  Google Scholar 

  10. D. A. Fernandez, J. Awruch, and L.E. Dicelio, Photochemistry and Photobiology 63, 784–792 (1996).

    Article  CAS  Google Scholar 

  11. S. J. Strickler and R. A. Berg, Journal of Chemical Physics 37, 814–822 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, K., Kim, S., Feng, X. et al. Enhancement of Photovoltaic Device Performance in Close-Packed Nanowire Excitonic Solar Cells by Förster Resonance Energy Transfer (FRET). MRS Online Proceedings Library 1208, 1302 (2009). https://doi.org/10.1557/PROC-1208-O13-02

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1208-O13-02

Navigation