Skip to main content
Log in

Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The current demand in the automobile industry is in the control of air-fuel mixture in the combustion engine of automobiles. Oxygen partial pressure can be used as an input parameter for regulating or controlling systems in order to optimize the combustion process. Our goal is to identify and optimize the material system that would potentially function as the active sensing material for such a device that monitors oxygen partial pressure in these systems. We have used thin film samaria doped ceria (SDC) as the sensing material for the sensor operation, exploiting the fact that at high temperatures, oxygen vacancies generated due to samarium doping act as conducting medium for oxygen ions which hop through the vacancies from one side to the other contributing to an electrical signal. We have recently established that 6 atom % Sm doping in ceria films has optimum conductivity. Based on this observation, we have studied the variation in the overall conductivity of 6 atom % samaria doped ceria thin films as a function of thickness in the range of 50 nm to 300 nm at a fixed bias voltage of 2 volts. A direct proportionality in the increase in the overall conductivity is observed with the increase in sensing film thickness. For a range of oxygen pressure values from 0.001 Torr to 100 Torr, a tolerable hysteresis error, good dynamic response and a response time of less than 10 seconds was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ionescu A. Hoel C. G. Granqvist E. Llobet and P. Heszler Sensors and Actuators B: Chemical 104 (1), 124–131 (2005).

    Article  CAS  Google Scholar 

  2. L. Francioso D. S. Presicce A. M. Taurino R. Rella P. Siciliano and A. Ficarella Sensors and Actuators B: Chemical 95 (1-3), 66–72 (2003).

    Article  CAS  Google Scholar 

  3. A. Mehta S. Patil H. Bang H. J. Cho and S. Seal Sensors and Actuators A: Physical 134 (1), 146–151 (2007).

    Article  CAS  Google Scholar 

  4. M. Ogita S. Yuasa K. Kobayashi Y. Yamada Y. Nakanishi and Y. Hatanaka Applied Surface Science 212-213, 397–401 (2003).

    Google Scholar 

  5. T. Takeuchi Sensors and Actuators 14 (2), 109–124 (1988).

    Article  CAS  Google Scholar 

  6. A. Lari A. Khodadadi and Y. Mortazavi Sensors and Actuators B: Chemical 139 (2), 361–368 (2009).

    Article  CAS  Google Scholar 

  7. W. C. Maskell Journal of Physics E: Scientific Instruments 20 (10), 1156–1168 (1987).

    Article  CAS  Google Scholar 

  8. G. Balducci M. S. Islam J. Kaspar P. Fornasiero and M. Graziani Chemistry of Materials 12 (3), 677–681 (2000).

    Article  CAS  Google Scholar 

  9. E. Mamontov T. Egami R. Brezny M. Koranne and S. Tyagi The Journal of Physical Chemistry B 104 (47), 11110–11116 (2000).

    Article  Google Scholar 

  10. M. Ozawa M. Kimura and A. Isogai Journal of Alloys and Compounds 193 (1-2), 73–75 (1993).

    Article  CAS  Google Scholar 

  11. M. Benammar Measurement Science and Technology 5 (7), 757–767 (1994).

    Article  CAS  Google Scholar 

  12. H. Dietz Solid State Ionics 6 (2), 175–183 (1982).

    Article  CAS  Google Scholar 

  13. W. Weppner Materials Science and Engineering: B 15 (1), 48–55 (1992).

    Article  Google Scholar 

  14. K. Saji H. Kondo H. Takahashi H. Futata K. Angata and T. Suzuki Sensors and Actuators B: Chemical 14 (1-3), 695–696 (1993).

    Article  CAS  Google Scholar 

  15. D. Pribat and G. Velasco Sensors and Actuators 13 (2), 173–194 (1988).

    Article  CAS  Google Scholar 

  16. R. Moos W. Menesklou H.-J. Schreiner and K. H. Härdtl, Sensors and Actuators B: Chemical 67 (1-2), 178–183 (2000).

    Article  CAS  Google Scholar 

  17. J. C. Hsieh C. J. Liu and Y. H. Ju Thin Solid Films 322 (1-2), 98–103 (1998).

    Article  CAS  Google Scholar 

  18. J. F. Chang H. H. Kuo I. C. Leu and M. H. Hon Sensors and Actuators B: Chemical 84 (2-3), 258–264 (2002).

    Article  CAS  Google Scholar 

  19. H.-Y. Wang and J. B. Lando Langmuir 10 (3), 790–796 (2002).

    Article  Google Scholar 

  20. G. Korotcenkov M. Ivanov I. Blinov and J. R. Stetter Thin Solid Films 515 (7-8), 3987–3996 (2007).

    Article  CAS  Google Scholar 

  21. R. K. Sharma and M. C. Bhatnagar Sensors and Actuators B: Chemical 56 (3), 215–219 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahul, P.S., Nandasiri, M., Kuchibhatla, S. et al. Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness. MRS Online Proceedings Library 1209, 307 (2009). https://doi.org/10.1557/PROC-1209-P03-07

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1209-P03-07

Navigation