Skip to main content
Log in

The Chemistry and Packaging of Nanocomposite Confined Arrays

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The miniaturization of electronic and optic devices has revolutionized response times, energy loss and transport efficiency. An additional bonus is that as one approaches the nanosize regime the presence or absence of a few atoms and the geometrical disposition of each atom can significantly modify electronic and photonic properties. This control can be further supplemented by “packaging” assemblies of atoms or molecules into thin film or nanocomposite bulk materials to define surface states, cluster environment and geometry, intercluster interactions, and consequently, a wide tunable range of optical and charge carrier responses.

The chemist is presented with an intriguing challenge. First the clusters must be unisized with identical geometries. Secondly, the atom or molecular assemblies should ideally have perfect periodicity in order to rigorously define optoelectronic densities and intercluster tunnelling. A third requirement is that the nanocomposite be processable, generally in the form of thin films or single crystals. Numerous approaches are being undertaken in achieve these goals, including molecular beam and atomic layer epitaxy, molecular sieve inclusion chemistry, molecular capping of inorganic clusters, porous glass and aerosol synthesis. This paper presents a brief review of the interface chemistry associated with nanophase confinement and packaging and some features of three dimensional surface confinement using molecular sieves and zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Brus, Proceedings of the Robert A. Welch Foundation Conference on Chemical Research, XXXII Valency, 1988, pp. 45–62.

    Google Scholar 

  2. M.L. Steigerwald and L.E. Brus, Ann. Rev. Mater. Sci. 19, 471 (1989)

    Article  CAS  Google Scholar 

  3. A. Henglein, Top. Curr. Chem. 143113 (1988).

    Article  CAS  Google Scholar 

  4. S. Schmitt-Rink, D.S. Chemla, and D. A. B. Miller, Adv. Phys., 38, 89 (1989).

    Article  CAS  Google Scholar 

  5. D.A.B. Miller, Optics & Photonics, Feb. 7-15 (1990).

    Google Scholar 

  6. A. Ceriotti, F. Demartin, G. Longoni, M. Manassero, M. Marchionna, G. Piva and M. Sansoni, Angew. Chem. Int. Ed. Engl. 24, 697 (1985).

    Article  Google Scholar 

  7. D.M. Washecheck, Ph.D. thesis, University of Wisconsin-Madison, 1980.

  8. D.M. Washecheck, E. J. Wucherer, L. F. Dahl, A. Ceriotti, G. Longoni, M. Manassero, M. Sansoni and P. Chini, J. Am. Chem. Soc., 101, 6110 (1979).

    Article  CAS  Google Scholar 

  9. G. Schmid, Polyhedron, 7, 2321–2329 (1988).

    Article  CAS  Google Scholar 

  10. I.G. Dance, A. Choy, M.L. Scudder, J. Am. Chem. Soc. 106, 6285 (1984).

    Article  CAS  Google Scholar 

  11. R. M. Herath Banda, I.G. Dance, T. D. Bailey; D.C. Craig, M. L. Scudder Inorg. Chem. 28, 1862 (1989).

    Article  Google Scholar 

  12. G.S.H. Lee, K J. Fisher, D.C. Craig, M.L. Scudder, and I.G. Dance J. Am. Chem. Soc. 112, 6434 (1990).

    Article  CAS  Google Scholar 

  13. G.S.H. Lee, D. C. Craig, I. Ma, M. L. Scudder, T. D. Bailey, and I. G. Dance, J. Am. Chem. Soc. 112, 4863 (1988).

    Article  Google Scholar 

  14. L.T. Cheng, N. Herron, Y. Wang, J. Appl. Phys. 66(7), 3417 (1989).

    Article  CAS  Google Scholar 

  15. L.E. Brus, J. Phys. Chem. 90, 2555 (1986).

    Article  CAS  Google Scholar 

  16. M.L. Steigerwald, A.P. Alivisatos, J.M. Gibson, T.D. Harris, R. Korten, A.G. Muller, A.M. Thayer, T.M. Duncan, and D. Douglas, J. Am. Chem. Soc. 110, 3046 (1988)

    Article  CAS  Google Scholar 

  17. N. Herron, Y. Wang, H. Eckert, J. Am. Chem. Soc. 112, 1322 (1990).

    Article  CAS  Google Scholar 

  18. M.N. Vargarftik, V.P. Zagorodnikov, I.P. Stoyarov, I.I. Moiseev, V.A. Kikholobov, et al., J. Chem. Soc. Chem. Comm. 1985. p. 937.

    Google Scholar 

  19. G. Schmid, U. Giebel, W. Huster, A. Schwenk, Inorg. Chun. Acta. 85, 97 (1984).

    Article  CAS  Google Scholar 

  20. B.K. Teo, M.C. Hong, H. Zhang, D.B. Huang, Angew. Chem. Int. Ed. Engl. 26, 897 (1987).

    Article  Google Scholar 

  21. A. Fojtik, H. Weller, U. Koch, A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 969 (1984).

    Article  CAS  Google Scholar 

  22. E.K. Byrne, L. Parkanyi, K. Theopold, Science 241, 332 (1988).

    Article  CAS  Google Scholar 

  23. P. Alivisatos and R. Wells, private communication.

  24. W. Mahler, Inorg. Chem. 27, 435 (1988).

    Article  CAS  Google Scholar 

  25. T. Rajh, M.I. Vucemilovic, N.M. Dimitrijevic, O.I. Micic, A.J. Nozik, Chem. Phys. Lett., 143, 305 (1988).

    Article  CAS  Google Scholar 

  26. C.T. Dameron, R.N. Reese, R.K. Mehra, A.R. Kortan, P.J. Carroll, M.L. Steigerwald, L.E. Brus, D.R. Winge,. Nature 338, 596 (1989).

    Article  CAS  Google Scholar 

  27. E. C. Theil, ACS Symp. Ser., 372, 179 (1988).

    Article  Google Scholar 

  28. E. C. Thiel, Annu. Rev. Biochem., 56, 289 (1987).

    Article  Google Scholar 

  29. S. J. Lippard, Angew. Chem. Int. Ed. Engl. 27, 344 (1988).

    Article  Google Scholar 

  30. S J. Lippard et al., J. Am. Chem. Soc. 109, 3337 (1987).

    Article  Google Scholar 

  31. S.C. O’Brien, Y. Liu, Q. Zhang, J.R. Heath, F.K. Tittel, R.F. Curl, R.E. Smalley, J. Chem. Phys., 84, 4074 (1986).

    Article  Google Scholar 

  32. K.D. Kolenbrander, M.L. Mandich, J. Chem. Phys. 90, 5884 (1989).

    Article  CAS  Google Scholar 

  33. Q. Zhang, W. Liu, R.F. Curl, F.K. Tittel, R.E. Smalley, AIP Conference Proceedings, 172, (1987); Adv. Laser Sci.-3 (1988).

  34. J.M. Alford and R.E. Smalley, Mater. Res. Soc. Symp. Proc. 131, Chemical Perspectives (1989).

  35. Ph. Gerhardt, S. Loffler, and K. H. Homann, Chem. Phys. Lett. 137, 306 (1987).

    Article  CAS  Google Scholar 

  36. W. Kratschmer, L. D. Lamb, K. Ïostiropoulous, and D. R. Huffman, Nature 347, xxx, (1990).

    Article  Google Scholar 

  37. T. Ishihara, J. Takahashi, and T. Goto, Solid St. Commun. 69, 933 (1989).

    Article  CAS  Google Scholar 

  38. Y. Horikoshi, M. Kawashima, H. Yamaguchi, Jpn. J. Appl. Phys. 25, L868 (1986).

    Article  CAS  Google Scholar 

  39. Taken from M.A. Reed, R.T. Bate, K. Bradshaw, W.M. Duncan, W.R. Frensley, J.W. Lee, H.D. Shih, J. Vac. Sci. Technol., B4, 358 (1986).

    Article  Google Scholar 

  40. R.D. Dupuis, R.C. Miller, P.M. Petroff, J. Crystal Growth, 68 (1), 398 (1984).

    Article  CAS  Google Scholar 

  41. R.C. Miller, A.C. Gossard, D.A. Kleinman, O. Munteanu, Phys. Rev. B29, 7085 (1984).

    Article  Google Scholar 

  42. P.M. Petroff, A.C. Gossard, R.A. Logan, W. Wiegmann, Appl. Phys. Lett. 41 (7), 635 (1982).

    Article  CAS  Google Scholar 

  43. J. Cibert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard, J.H. English, Appl. Phys. Lett. 49, 1275 (1986).

    Article  CAS  Google Scholar 

  44. M.A. McCord, R.F.W. Pease, J. Vac. Sci. Technol., B5, 437 (1987).

    Google Scholar 

  45. C.J. Sandroff, J.P. Harbison, R. Ramesh, M.J. Andrejco, M.S. Hedge, D.M. Hwang, C.C. Chang, E.M. Vogel, Science 245, 391 (1989).

    Article  CAS  Google Scholar 

  46. G. Ozin, A. Stein, A. Kuperman, Angew. Chem. 101, 373 (1989).

    Article  CAS  Google Scholar 

  47. G.D. Stucky, J.E. MacDougall, Science (Washington, D. C, 1883-) 247(4943), 669–78 (1990)

    Google Scholar 

  48. For good general references on zeolite Y and molecular sieves in general, see D. W. Breck, “Zeolite Molecular Sieves” Robert E. Krieger, Publishing Co., Malabar, Fl (1984); R.M. Barrer, FRS, “Zeolites and Clay Minerals as Sorbents and Molecular Sieves”, Academic Press, New York (1978).

  49. M. E. Davis, C. Saldarriaga, C. Montes, J. Garces and C. Crowder, Nature 331, 698 (1988); M. E. Davis, C. Saldarriaga, C. Montes, J. Garces and C. Crowder, Zeolites 8, 362 (1988).

  50. J. V. Smith and W.J. Dytrych, Nature, 309, 607 (1984).

    Article  CAS  Google Scholar 

  51. T. C. Sollner, P. E. Tannenwald, D. D. Peck, and W. D. Goodhue, Appl. Phys. Lett. 45, 1319 (1984).

    Article  CAS  Google Scholar 

  52. D. F. Nelson, R. C. Miller, D. A. Kleinman, and A. C. Gossard, Phys. Rev. B. 34, 8671 (1986).

    Article  CAS  Google Scholar 

  53. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett. 51, 934 (1987).

    Article  CAS  Google Scholar 

  54. L. C. West, and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985).

    Article  CAS  Google Scholar 

  55. C. Fouassier, A. Levasseur, J. C. Joubert, J. Muller, P. Hagenmuller, Z. Anorg. Allg. Chem. 375 (2), 202 (1970).

    Article  CAS  Google Scholar 

  56. K.L. Moran, W.T.A. Harrison, T.E. Gier, J.E. MacDougall, G.D. Stucky, Mater. Res. Soc. Symp. Proc., 164 (Mater. Issues Microcryst Semicond.), 123–8, (1990) and unpublished results.

    Article  CAS  Google Scholar 

  57. A. Stein, P. M. Macdonald, G. A. Ozin, and G. D. Stucky, J. Phys. Chem. 94 (18), 6943 (1990).

    Article  CAS  Google Scholar 

  58. G. A. Ozin, A. Stein, J. P. Godber and G. D. Stucky, Proc. of the 5th International Symposium on Inclusion Phenomena and Molecular Recognition, J Atwood, ed, 379 (1990).

  59. A. Stein, G.A. Ozin, G.D. Stucky, J. Am. Chem. Soc.112, 904 (1990).

    Article  CAS  Google Scholar 

  60. A. Stein, G.A. Olzin and G.D. Stucky, J. soc. Photogr. Sci. Technol. Japan, 53, 001 (1990).

    Google Scholar 

  61. Y. Wang, N. Herron, J. Phys. Chem.91, (2), 257 (1987).

    Article  CAS  Google Scholar 

  62. Y. Wang, N. Herron, J. Phys. Chem. 92 (17), 4988 (1988).

    Article  CAS  Google Scholar 

  63. N. Herron, Y. Wang, M.M. Eddy, G.D. Stucky, D.E. Cox, K. Moller, T. Bein, J. Am. Chem. Soc. 111 (2), 530 (1989).

    Article  CAS  Google Scholar 

  64. K. Moller, M.M. Eddy, G.D. Stucky, N. Herron, T. Bein, J. Am. Chem. Soc. 111 (7), 2564 (1989).

    Article  CAS  Google Scholar 

  65. X. Liu and J.K. Thomas, Langmuir 5 (1), 58 (1989).

    Article  CAS  Google Scholar 

  66. R.D. Stramel, T. Nakamura, J.K. Thomas, J. Chem. Soc., Faraday Trans. 184 (5), 1287 (1988).

    Article  Google Scholar 

  67. M.A. Fox, T.L. Pettit, Langmuir 5 (4), 1056 (1989).

    Article  CAS  Google Scholar 

  68. N. Herron, Y. Wang, M.M. Eddy, G.D. Stucky, D.E. Cox, K. Moller, T. Bein, J. Am. Chem. Soc.111, 530 (1989).

    Article  CAS  Google Scholar 

  69. V. N. Bogomolov, E. L. Lutsenko, V. P. Petranovskii, S. V. Kholodkevich, Pis’ma Zh. Eksp. Teor. Fiz. 23(9), 528–30 (1976).

    CAS  Google Scholar 

  70. V. N. Bogomolov, V. V. Poborchii, S. V. Kholodkevich, Pis’ma Zh. Eksp. Teor. Fiz. 31(8), 464–7 (1980).

    CAS  Google Scholar 

  71. V. N. Bogomolov, A. I. Zadorozhnii, V. P. Petranovskii, A. V. Fokin, S. V. Kholodkevich, Pis’ma Zh. Eksp. Teor. Fiz. 29(7), 411–14 (1979).

    CAS  Google Scholar 

  72. V.N. Bogomolov, I.B. Vendik, V.V. Esipov, V.V. Zadorozhnii, T.M. Pavlova, Radiotekh. Elektron. (Moscow) 32(9), 2000–2 (1987).

    CAS  Google Scholar 

  73. J. B. Parise, J. E. Mac Dougall, N. Herron, R. Farlee, A. W. Sleight, Y. Wang, T. Bein, K. Moller, L. M. Moroney, Inorg. Chem. 27(2), 221–8 (1988).

    Article  CAS  Google Scholar 

  74. H. Endo, M. Yao, Hyomen 25(6), 394–9 (1987).

    CAS  Google Scholar 

  75. Y. Katayama, M. Yao, Y. Ajiro, M. Inui, H. Endo, J. Phys. Soc. Jpn. 58(5), 1811–22 (1989).

    Article  CAS  Google Scholar 

  76. Y. Nozue, Z.K. Tang and T. Goto, Solid State Comm. 73, 531 (1990).

    Article  CAS  Google Scholar 

  77. S. Ozkar, G.A. Ozin, K. Moller, T. Bein, J. Am. Chem. Soc. 112(26), 9575–86 (1990).

    Article  CAS  Google Scholar 

  78. G.A. Ozin, S. Ozkar, J. Phys. Chem. 94(19), 7556–62 (1990).

    Article  CAS  Google Scholar 

  79. G.A. Ozin, S. Ozkar, P. Macdonald, J. Phys. Chem. 94(18), 6939–43 (1990).

    Article  CAS  Google Scholar 

  80. J.E. Mac Dougall, H. Eckert, G.D. Stucky, N. Herron, Y. Wang, K. Moller, T. Bein, D. Cox, J. Am. Chem. Soc.,111, 8006 (1989).

    Article  CAS  Google Scholar 

  81. J.M. Bennet; J.P. Cohen; E.M. Flanigen; J.J. Pluth; J.V. Smith in: Intrazeolite Chemistry, ACS Symposium Series 218, eds. G.D. Stucky and F.G. Dwyer, American Chemical Society: Washington, D.C., 1983, p. 109–118.

  82. J.M. Bennett, J.W. Richardson, Jr., J.J. Pluth, J.V. Smith, Zeolites, 6, 160 (1987).

    Article  Google Scholar 

  83. M.E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowder, Nature 331, 698 (1988); Zeolites 8, 362 (1988).

    Article  CAS  Google Scholar 

  84. J. Felsche, S. Luger, Ch. Baerlocher, Zeolites 6, 367 (1986).

    Article  CAS  Google Scholar 

  85. J.A. Gard, J.M. Tait, Acta. Cryst. B28, 825 (1972).

    Article  Google Scholar 

  86. R.L. Bedard, S.T. Wilson, L.D. Vail, J.M. Bennet, E.M. Flanigen, “Zeolites: Facts, Figures, Future”, Studies in Surface Science and Catalysis, 49, (1989), P. A. Jacobs and R. A. van Santen, Eds. 375–387.

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to particularly thank Norm Herron, Ying Wang, Karin Moller, Thomas Bein and Geof Ozin for their help and many enlightening discussions. The research support of the Office of Naval Research, the National Science Foundation and E.I. du Pont is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stucky, G.D. The Chemistry and Packaging of Nanocomposite Confined Arrays. MRS Online Proceedings Library 206, 507–520 (1990). https://doi.org/10.1557/PROC-206-507

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-206-507

Navigation