Skip to main content
Log in

Radiation-Enhanced Plastic Flow of Covalent Materials During Ion Irradiation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Plastic deformation of several covalently-bound materials has been studied during ion irradiation. In all of these materials, namely crystalline and amorphous silicon, crystalline and amorphous Si0.9Ge0.1, and amorphous SiO2, the damage created by the ion beam causes density changes in the irradiated region which eventually saturate with ion dose. In the crystalline materials, the density changes were accompanied by a transformation to the amorphous phase. Superimposed on the density changes is plastic deformation which occurs during irradiation of both crystalline and amorphous materials to relieve stresses in the irradiated region. A wafer curvature measurement technique has been developed which allows the contributions from density changes and plastic deformation to be distinguished and the stress dependence of the plastic deformation to be determined.

In all of the amorphous materials, the plastic deformation is Newtonian viscous shear flow, which is characteristic of solids where deformation is governed by the diffusive motion of point defects. The radiation-enhanced shear viscosity per ion was flux-independent, revealing that flow occurs rapidly, probably within the localized damaged regions created by each ion. This viscosity does not depend strongly on the material. In fact, similar viscosities were obtained during measurements of radiation-enhanced plastic deformation of crystalline covalent samples and polycrystalline aluminum films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Volkert, J. Appl. Phys. 70, 3521 (1991).

    Article  CAS  Google Scholar 

  2. C. A. Volkert and A. Polman, submitted to Appl. Phys. Lett.

  3. S. Klaumünzer, C. Li, S. Löffler, M. Rammensee, G. Schumacher, and H. Ch. Neitzert, Rad. Eff. 108, 131 (1989).

    Article  Google Scholar 

  4. A. Audouard, E. Balanzat, J. C. Jousset, G. Fuchs, D. Lesueur, and L. Thome, Nucl. Inst. Meth. B 39, 18 (1989).

    Article  Google Scholar 

  5. H. J. Lee, C. H. Henry, K. J. Orlowsky, R. F. Kazarinov, and T. Y. Kometani, Appl. Optics 27, 4104 (1988).

    Article  CAS  Google Scholar 

  6. G. G. Stoney, Proc. Roy. Soc. London A 82, 172 (1909).

    Article  CAS  Google Scholar 

  7. W. A. Brantley, J. Appl. Phys. 44, 534 (1973).

    Article  CAS  Google Scholar 

  8. P. J. Burnett and G. A. D. Bnggs, J. Mater. Sci. 21, 1828 (1986).

    Article  CAS  Google Scholar 

  9. R. Bhadra, J. Pearson, P. Okamoto, L. Rehn, and M. Grimsditch, Phys. Rev. B 38, 12656 (1988).

    Article  CAS  Google Scholar 

  10. D. B. Fraser, J. Appl. Phys. 39, 5868 (1968).

    Article  CAS  Google Scholar 

  11. C. A. Volkert, E. A. Fitzgerald, R. Hull, Y. H. Xie, and Y. J. Mii, J. Elect. Mat. 20, 833 (1991).

    Article  CAS  Google Scholar 

  12. In calculating the stress in the “set” samples which are no longer in a spherical stress state, a modification of equation (1) must be used, which is described in reference [1].

  13. C. A. Volkert, in Beam-Solid Interactions: Physical Phenomena, MRS Symposia Proceedings, edited by J. A. Knapp, P. Borgesen, and R. A. Zuhr (Materials Research Society, Pittsbugh PA, 1990}), p. 6

  14. C. A. Volkert, to be submitted to Appl. Phys. Lett.

  15. J. A. Roth, G. L. Olson, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 57, 1340 (1990).

    Article  CAS  Google Scholar 

  16. A. Witvrouw and F. Spaepen, in Kinetics of Phase Transformations, MRS Symposia Proceedings, edited by M. O. Thompson, M. J. Aziz, and G. B. Stephenson, (Materials Research Society, Pittsbugh PA), in pres

  17. S. Roorda, W. C. Sinke, J. M. Poate, D. C. Jacobson, S. Dierker, B. S. Dennis, D. J. Eaglesham, F. Spaepen, and P. Fuoss, Phys. Rev.B 44, 3702 (1991).

    Article  CAS  Google Scholar 

  18. G. L. Olson and J. A. Roth, Mat. Sci. Rep. 3, 1 (1988).

    Article  CAS  Google Scholar 

  19. J. P. Biersack and L. G. Haggmark, NucL Inst. Meth. B 174, 257 (1980).

    Article  CAS  Google Scholar 

  20. A. P. Webb and P. D. Townsend, J. Phys. D 9, 1343 (1976).

    Article  CAS  Google Scholar 

  21. J. Heibei and E. Voges, Phys. Stat. Sol. B 57, 609 (1980).

    Article  CAS  Google Scholar 

  22. W. Primak, The Compacted States of Vitreous Silica, (Gordon and Breach, New York, 1975).

    Google Scholar 

  23. P. A. Flynn, D. S. Gardner, and W. D. Nix, IEEE Trans. Elect. Dev. ED-34, 689 (1987).

    Article  Google Scholar 

  24. V. V. Penkovskii, Effect of Radiation on Metals (Elsevier Publishing Company, Amsterdam, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkert, C.A., Polman, A. Radiation-Enhanced Plastic Flow of Covalent Materials During Ion Irradiation. MRS Online Proceedings Library 235, 3–14 (1991). https://doi.org/10.1557/PROC-235-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-235-3

Navigation