Skip to main content
Log in

First Principles Calculation of Residual Resistivity

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The list of physical properties which are important in the design of materials and which are routinely calculated from first principles within the local density approximation to density functional theory is continually growing. In this paper we discuss the application of multiple scattering theory to the calculation of the residual resistivity of disordered alloys. Progress has been made on two fronts. First, the coherent potential approximation for the resistivity, which sums to all orders a limited set of multiple scattering diagrams, has given resistivities in agreement with experiment for alloys where the site occupation is roughly random. Second, the linearized KKR was used to evaluate the Kubo formula for several large configurations of atoms and obtain the resistivity with all multiple scattering paths included. This method is not limited to random alloys, but can be applied to short range ordered and amorphous alloys provided the resistivity is high enough to limit the mean free path to a single unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  Google Scholar 

  2. W. H. Butler, J. S. Swihart, G. M. Stocks, D. M. Nicholson, and R. C. Ward, Phys. Rev. Lett. 57, 1181–84 (1986).

    Article  Google Scholar 

  3. R. H. Brown, P. B. Allen, D. M. Nicholson, and W. H. Butler, Phys. Rev. Lett. 62, 661 (1989).

    Article  CAS  Google Scholar 

  4. H. Yang, Thesis (1991) unpublished.

  5. Chen, Phys. Rev. Lett.

  6. D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks, Phys. Rev. Lett. 56, 2088 (1986).

    Article  CAS  Google Scholar 

  7. G. S. Cargill{iiiIII}, J. Appl. Phys. B 23, 315 (1976); J. P. Carini, S.R. Nagel, L. K. Varga, and T. Schmidt, Phys. Rev. B 27, 7589 (1983).

    Google Scholar 

  8. S. Aryainajud, Ph.D. thesis, Indiana University, Bloomington, Indiana, (1983) unpublished; N. E. Alekseevskii, A. V. Mitin, and N. M. Matveeva, Zh. Eksp. Teor. Fiz. 69, 2124 (1975) [Soy. Phy. JETP 42,1080 (1976)].

    Google Scholar 

  9. T. S. Lei, K. Vasudevan, and E. E. Stansbury, Mat. Res. Soc. Symp. Proc. Vol 39, 164 (1985).

    Google Scholar 

  10. W. H. Butler, Phys. Rev. B 31, 3260 (1985); L. M. Schwartz, Phys. Rev. B 24, 1091 (1981).

    Article  CAS  Google Scholar 

  11. L. M. Roth, Phys. Rev. B 9, 2476 (1974); D. M. Nicholson and L. M. Schwartz, Phys. Rev. Lett. 49, 1050 (1982).

    Article  CAS  Google Scholar 

  12. J. G. Kirkwood, E. K. Maun, B. J. Adler, J. Chem. Phys. 18, 1040 (1950).

    Article  CAS  Google Scholar 

  13. J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).

    Article  CAS  Google Scholar 

  14. C. C. Tsuei, Phys. Rev. Lett. 57, 1943 (1986).

    Article  CAS  Google Scholar 

  15. M. Jonson and S. M. Girvin, Phys. Rev. Lett. 43, 1447 (1979); S. M. Girvin and M. Jonson, Phys. Rev. Lett. 57, 1181 (1986).

    Article  CAS  Google Scholar 

  16. P. Lamparter and S. Steeb, Proceedings of the 5th International Conference of Rapidly Quenched Metals (1984).

  17. H. Yang, Ph.D. thesis, Indiana University, Bloomington, Indiana, (1990) unpublished.

    Google Scholar 

  18. H. Thomas, Z. Physik, 129 (1951).

  19. B. Chakravarti, E. A. StarkeJr., C. J. Sparks, and R. O. Williams, J. Phys. Chem. 35, 2017 (1974).

    Google Scholar 

  20. D. M. Nicholson, G. M. Stocks, F. J. Pinski, A. Gonis, B. L. Gyorffy, and D. D. Johnson, Bull. Am. Phys. Soc. 33, 529 (1988); D. M. Nicholson, unpublished.

    Google Scholar 

  21. B. Schonfeld, L. Reinhard, G. Kostorz, W. Buhrer, Phys. Stat. Sol. (b) 148, 457 (1988).

    Article  Google Scholar 

Download references

Acknowledgement

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Conservation and Renewable Energy, Office of Industrial Technologies, Advanced Industrial Concepts Division, Advanced Industrial Concepts (AIC) Materials Program, and Division of Materials Science, Office of Basic Energy Sciences under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc., and by the National Science Foundation, Grant No. DMR 81-17013. The work of P. B. Allen was supported by the Division of Materials Science, U.S. Department of Energy, under contract DE-AC02-76CH0016. The research was assisted by the participation of the authors in the alloy workshops sponsored by IBM, held at the University of Kentucky Computer Center. The large matrix calculations were done at the Cornell National Supercomputer Facility

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, D.M., Brown, R.H., Butler, W.H. et al. First Principles Calculation of Residual Resistivity. MRS Online Proceedings Library 253, 269–276 (1991). https://doi.org/10.1557/PROC-253-269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-253-269

Navigation