Skip to main content
Log in

Thermodynamic Coupling of Heat and Matter Flows in Near-Field Regions of Nuclear Waste Repositories

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier’s law, Darcy’s law, and Fick’s law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Tsang, J. Xoorishad, and J. S. Y. Wang. Mat. Res. Soc. Symp. Proc. 15, 515–522 (1983).

    Article  Google Scholar 

  2. J. W. Cary and S. A. Taylor, Soil Sci. Soc. Amer. Proc. 26, 413–416 (1962).

    Article  Google Scholar 

  3. J. W. Cary and S. A. Taylor, Soil Sci. Soc. Amer. Proc. 26, 417–420 (1962).

    Article  Google Scholar 

  4. S. A. Taylor and J. W. Cary, Soil Sci. Soc. Amer. Proc. 28, 167–171 (1964).

    Article  Google Scholar 

  5. P. H. Groenevelt and G. H. Bolt, J. Hydrology 7, 358–388 (1969).

    Article  Google Scholar 

  6. R. Pal and M. P. Gupta, J. Hydrology 13, 278–280 (1971).

    Article  Google Scholar 

  7. P. A. C. Raats, Water Resour. Res. 11, 938–942 (1975).

    Article  Google Scholar 

  8. C. L. Carnahan, J. Hydrology 31, 125–150 (1976).

    Article  Google Scholar 

  9. W. E. Reed, J. Geophys. Res. 75, 415–430 (1970).

    Article  CAS  Google Scholar 

  10. B. B. Hanshaw and E-An Zen, Geol. Soc. Amer. Bull. 76, 1379–1386 (1965).

    Article  CAS  Google Scholar 

  11. J. A. Greenberg and J. K. Mitchell in: Aquitards in the Coastal Ground Water Basin of Oxnard Plain, Ventura County, Bulletin No. 63-4 (State of California, The Resources Agency, Department of Water Resources 1971) pp. 129–141.

    Google Scholar 

  12. D. D. Fitts, Nonequilibrium Thermodynamics (McGraw-Hill, New York 1962).

    Google Scholar 

  13. S. R. DeGroot and P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam 1969).

    Google Scholar 

  14. A. Katchalsky and P. F. Curran, Nonequilibrium Thermodynamics in Biophysics (Harvard University Press, Cambridge 1967).

    Google Scholar 

  15. L. Onsager, Phys. Rev. 37, 405–426 (1931); 38, 2265–2279 (1931).

    Article  CAS  Google Scholar 

  16. D. G. Miller in: Foundations of Continuum Thermodynamics, J. J. Delgado Domingos, M. N. R. Nina, and J. H. Whitelaw, eds. (MacMillan Press, London 1974) pp. 185–214.

    Google Scholar 

  17. J. S. Y. Wang, D. C. Mangold, and C. F. Tsang, Mat, Res. Soc. Symp. Proc. 15, 531–538 (1983).

    Article  Google Scholar 

  18. F. N. Hodges in: Engineered Barrier Development for a Nuclear Waste Repository in Basalt: An Integration of Current Knowledge, Report RHO-BWI-ST-7, M. J. Smith et al. (Rockwell International 1980) pp. 2-105-2-133.

  19. R. C. Srivastava and P. K. Avasthi, J. Hydrology 24, 111–120 (1975).

    Article  Google Scholar 

  20. J. Letey and W. D. Kemper, Soil Sci. Soc. Amer. Proc. 33. 25–29 (1969).

    Article  CAS  Google Scholar 

  21. E. C. Thornton and W. E. Seyfried, Science 220, 1156–1158 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carnahan, C.L. Thermodynamic Coupling of Heat and Matter Flows in Near-Field Regions of Nuclear Waste Repositories. MRS Online Proceedings Library 26, 1023–1030 (1983). https://doi.org/10.1557/PROC-26-1023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-26-1023

Navigation