Skip to main content
Log in

Energy of Planar Faults as a Function of Composition in Binary and Ternary TiAl Alloys

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Establishing the chemical dependence of thermally activated processes which govern plasticity in intermetallic alloys requires that the dislocation dissociation reactions be determined as a function of composition. A major parameter governing such reactions is the relative fault stability as a function of composition. Here the results of first principles electronic structure calculations, using the layer Korringa-Kohn-Rostoker method, are reported for planar faults in γ TiAl at various compositions. The influence of dilute substitutional impurities on the fault energies is treated using the coherent potential approximation. The variation of fault energies as a function of binary composition (TixAl1-x where 52≤x≤49) and the addition of transition metals (Cr, Mn and Nb at 2% concentration) are presented. The influence of this chemical dependence on the stability of <101] super-dislocations is discussed, along with expected trends in the flow stress behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Lipsitt, D. Shechtman, R.E. Schafrik, Metall. Trans. 6A, 1991 (1975).

    Article  CAS  Google Scholar 

  2. T. Kawabata, T. Kanai, and O. Izumi, Acta Metall. 33, 1355 (1985).

    Article  CAS  Google Scholar 

  3. V. Paidar, D.V. Pope and V. Vitek, Acta Metall. 32, 435 (1984).

    Article  CAS  Google Scholar 

  4. G. Hug, A. Loiseau and P. Veyssiere. Phil. Mag. A57, 499 (1988)

    Article  Google Scholar 

  5. B.A. Greenberg, O.V. Antonova, V.N. Indenbaum, L.E. Karkina, A.B. Notkin, M.V. Ponomarev and L.V. Smirnov, Acta Metall. mater. 39, 233 (1991).

    Article  Google Scholar 

  6. M.J. Blackburn and M.P. Smith, U.S.A.F. Tech. Report No. AFML-TR-79-4056, 1979.

    Google Scholar 

  7. S.C. Huang and E.L. Hall in High-Temperature Ordered Intermetallic Alloys III, edited by C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Koch, (Mater. Res. Soc. Proc. 133, Pittsburgh, PA 1989) pp. 329–334.

    Google Scholar 

  8. T. Tsujimoto and K. Hashimoto in High-Temperature Ordered Intermetallic Alloys III, edited by C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Koch, (Mater. Res. Soc. Proc. 133, Pittsburgh, PA 1989) pp. 391–396.

    Google Scholar 

  9. T. Kawabata, T. Tamura and O. Izumi in Hiah-Temperature Ordered Intermetallic Alloys III, edited by C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Koch, (Mater. Res. Soc. Proc. 133, Pittsburgh, PA 1989) pp. 391–396.

    Google Scholar 

  10. For a review of this work see Y.W. Kim and D.M. Dimiduk, JOM, 43, 40 (1991).

    Article  CAS  Google Scholar 

  11. K.J. Hemker, B. Viguier and M.J. Mills, private communications.

  12. J.M. MacLaren, S. Crampin, and D.D. Vvedensky, Phys. Rev. B40, 12164 (1989).

    Article  Google Scholar 

  13. see for example, J.S. Faulkner in Progress in Materials Science, edited by J.W. Christian, P. Hassen and T.B. Massalski, (Pergamon, New York, 1973), p. 385.

  14. D.D. Johnson, D.M. Nicholson, F.J. Pinsky, B.L Gyorffy and G.M. Stocks, Phys. Rev. B41, 9701 (1990).

    Article  Google Scholar 

  15. J.M MacLaren, A. Gonis and G. Schadler, Phys. Rev. B45, 14392 (1992).

    Article  Google Scholar 

  16. C. Woodward, J.M. MacLaren and S. Rao, J. Mater. Res. 7, 1735 (1992).

    Article  CAS  Google Scholar 

  17. H. Doi, K. Hashimoto, K. Kasahara and T. Tsujimoto, Mat. Trans, JIM, 31, 975 (1990).

    Article  Google Scholar 

  18. D. Shindo, A. Chiba, K. Hiraga and S. Hanada in Proceedings of the International Symposium on Intermetallic Compounds, (Sendai, Japan, 1991), p. 87.

    Google Scholar 

  19. G. Hug and I. Phan, private communication.

  20. C.L Fu and M.H. Yoo, Philos. Mag. Lett. 62, 159 (1990).

    Article  CAS  Google Scholar 

  21. G. Hug and P. Veyssiere in International Symp, on Electronic Microscopy an Plasticity and Fracture Research of Materials. (Dresden, October, 1989).

    Google Scholar 

  22. M.J. Marcinkowski, in Electron Microscopy and Strength of Crystals, edited by G. Thomas and J. Washburn (Interscience Publishers, 1963), p. 431.

  23. J. W. Steeds in Anisotropic Elasticity Theory of Dislocations, (Clarendon Press, Oxford, 1973) Pg. 31.

    Google Scholar 

  24. C. Woodward and S. I. Rao, to be published.

Download references

Acknowledgements

The authors gratefully acknowledge numerous useful discussions with Drs. S. Rao, T.A. Partharasarthy and P.M. Hazzledine. This work was sponsored by the U.S. Air Force under the contract #F33615-91-C-5663.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodward, C., MacLaren, J.M. & Dimiduk, D.M. Energy of Planar Faults as a Function of Composition in Binary and Ternary TiAl Alloys. MRS Online Proceedings Library 288, 171–176 (1992). https://doi.org/10.1557/PROC-288-171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-288-171

Navigation